Advertisement

Cellulose

, Volume 24, Issue 8, pp 3479–3487 | Cite as

Two-phase water model in the cellulose network of paper

  • A. Conti
  • M. Palombo
  • A. Parmentier
  • G. Poggi
  • P. Baglioni
  • F. De Luca
Original Paper

Abstract

Water diffusion in cellulose was studied via two-phase Kärger model and the propagator method. In addition to ruling out anomalous diffusion, the mean squared displacements obtained at different diffusion times from the Kärger model allowed to characterize the system’s phases by their average confining sizes, average connectivity and average apparent diffusion coefficients. The two-phase scheme was confirmed by the propagator method, which has given insights into the confining phase-geometry, found consistent with a parallel-plane arrangement. Final results indicate that water in cellulose is confined in two different types of amorphous domains, one placed at fiber surfaces, the other at fiber cores. This picture fully corresponds to the phenomenological categories so far used to identify water in cellulose fibers, namely, free and bound water, or freezing and non-freezing water.

Keywords

Cellulose Paper Water diffusion PFG NMR Propagator 

References

  1. Callaghan P (2011) Translational dynamics and magnetic resonance: principles of pulsed gradient spin echo nmr. Oxford University Press, New YorkCrossRefGoogle Scholar
  2. Calvini P (2005) The influence of levelling-off degree of polymerisation on the kinetics of cellulose degradation. Cellulose 12:445. doi: 10.1007/s10570-005-2206-z CrossRefGoogle Scholar
  3. Calvini P, Gorassini A, Merlani A (2008) On the kinetics of cellulose degradation: looking beyond the pseudo zero order rate equation. Cellulose 15:193. doi: 10.1007/s10570-007-9162-8 CrossRefGoogle Scholar
  4. Casieri C, Monaco A, De Luca F (2010) Evidence of temperature-induced subdiffusion of water on the micrometer scale in a Nafion membrane. Macromolecules 43(2):638–642. doi: 10.1021/ma902323t CrossRefGoogle Scholar
  5. Conti A, Poggi G, Baglioni P, De Luca F (2014) On the macromolecular cellulosic network of paper: changes induced by acid hydrolysis studied by NMR diffusometry and relaxometry. Phys Chem Chem Phys 16:8409. doi: 10.1039/C4CP00377B CrossRefGoogle Scholar
  6. English N, MacElroy J (2003) Molecular dynamics simulations of microwave heating of water. J Chem Phys 118:1589. doi: 10.1063/1.1538595 CrossRefGoogle Scholar
  7. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. In: Walter de Gruyter. Berlin and New York. doi: 10.1002/pol.1985.130231112
  8. Horner A, Milchev A, Argyrakis P (1995) Role of percolation in diffusion on random lattices. Phys Rev E 52:3570. doi: 10.1103/PhysRevE.52.3570 CrossRefGoogle Scholar
  9. Kaerger J, Pfeifer H, Heink W (1988) Principles and applications of self-diffusion measurements by nuclear magnetic resonance. Adv Magn Res 12:1CrossRefGoogle Scholar
  10. Kimmich R (1997) NMR—tomography, diffusometry, relaxometry. Springer, BerlinGoogle Scholar
  11. Lepore A, Baccaro S, Casieri C, Cemmi A, De Luca F (2012) Role of water in the ageing mechanism of paper. Chem Phys Lett 531:206. doi: 10.1016/j.cplett.2012.01.083 CrossRefGoogle Scholar
  12. Long F, Bagley E, Wilkens J (2004) Anomalous diffusion of acetone into cellulose acetate. J Chem Phys 21:1412. doi: 10.1063/1.1699249 CrossRefGoogle Scholar
  13. Mueller M, Riekel C, Vuong R, Chanzy H (2000) Skin/core micro-structure in viscose rayon fibres analysed by X-ray microbeam and electron diffraction mapping. Polymer 41:2627. doi: 10.1016/S0032-3861(99)00433-4 CrossRefGoogle Scholar
  14. Nakamura K, Hatakeyama T, Hatakeyama H (1981) Studies on bound water of cellulose by differential scanning calorimetry. Text Res J 51:607. doi: 10.1177/004051758105100909 CrossRefGoogle Scholar
  15. Nisizawa K (1973) Mode of action of cellulases. J Ferment Technol 51:267Google Scholar
  16. Niskanen K (1998) Paper physics. Fapet Oy, HelsinkyGoogle Scholar
  17. Palombo M, Gabrielli A, Servedio V, Ruocco G, Capuani S (2013) Structural disorder and anomalous diffusion in random packing of spheres. Sci Rep 3:2631CrossRefGoogle Scholar
  18. Price W (2009) NMR studies of translational motion. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. Proietti N, Capitani D, Pedemonte E, Blumich B, Segre A (2004) Monitoring degradation in paper: non-invasive analysis by unilateral NMR, part II. J Magn Reson 170:113. doi: 10.1016/j.jmr.2004.06.006 CrossRefGoogle Scholar
  20. Schuster K, Aldred P, Villa M, Baron M, Loidl R, Biganska O, Patlazhan S, Navard P, Ruef H, Jericha E (2003) Characterising the emerging lyocell fibres structures by ultra small angle neutron scattering (USANS). Lenzinger Ber 82:107Google Scholar
  21. Stephens C, Whitmore P, Morris H, Bier M (2008) Hydrolysis of the amorphous cellulose in cotton-based paper. Biomacromolecules 9:1093. doi: 10.1021/bm800049w CrossRefGoogle Scholar
  22. Topgaard D, Soderman O (2001) Diffusion of water absorbed in cellulose fibers studied with \(^1\)H-NMR. Langmuir 17:2694. doi: 10.1021/la000982l CrossRefGoogle Scholar
  23. UNI 8282 (1994) cellulose in dilute solutions—determination of limiting viscosity number—method in cupri-ethylenediamine (CED) solution—equivalent to the ISO standard 5351/1Google Scholar
  24. Zhao H, Kwak J, Zhang Z, Brown H, Arey B, Holladay J (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr Polym 68:235. doi: 10.1016/j.carbpol.2006.12.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of PhysicsSapienza University of RomeRomeItaly
  2. 2.CEA/DRF/I2BM/NeuroSpinGif-sur-YvetteFrance
  3. 3.CNR ISC UOSSapienza University of RomeRomeItaly
  4. 4.CMIC Department of Computer ScienceUCLLondonUK
  5. 5.Department of Physics and NAST CenterTor Vergata University of RomeRomeItaly
  6. 6.Department of Chemistry and CSGIUniversity of FlorenceSesto FiorentinoItaly
  7. 7.Department of PhysicsSapienza University of RomeRomeItaly

Personalised recommendations