, Volume 24, Issue 8, pp 3231–3242 | Cite as

Ensemble evaluation of polydisperse nanocellulose dimensions: rheology, electron microscopy, X-ray scattering and turbidimetry

  • Reina Tanaka
  • Tomoko Kuribayashi
  • Yu Ogawa
  • Tsuguyuki Saito
  • Akira Isogai
  • Yoshiharu NishiyamaEmail author
Original Paper


Six types of CNCs with different sizes were prepared from tunicins by sulfuric acid hydrolysis and subsequent sonication in water. The size distributions of CNCs were comprehensively evaluated by turbidimetry, small angle X-ray scattering, and microscopy to predict their intrinsic viscosities. Experimental intrinsic viscosities [η] of the CNC dispersions were evaluated by shear viscosity measurement, and then compared with their theoretical [η] values based on theories for rotational motions of rigid rods. The experimental [η] values for the straight CNCs were in good agreement with their theoretical [η] values, irrespective of the size and distributions. On the other hand, the experimental [η] value of the kinked CNC was higher than the theoretical [η] value, in agreement with a theoretical calculation giving higher intrinsic viscosities for bent fibers.


Cellulose nanocrystal (CNC) Intrinsic viscosity Size distribution Kink 



This research was supported by the Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency and Grants-in-Aid for Scientific Research (Grant Numbers JP 16J05556 and 15H04524) from the Japan Society for the Promotion of Science. We thank the NanoBio-ICMG platform (FR 2607 Grenoble) for granting access to the electron microscopy facility and Okasei Ltd., Onagawa, Japan for supplying tunicate samples.

Supplementary material

10570_2017_1334_MOESM1_ESM.docx (826 kb)
Supplementary material 1 (DOCX 825 kb)


  1. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6(2):612–626CrossRefGoogle Scholar
  2. Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A 377(1–3):297–303CrossRefGoogle Scholar
  3. Broersma S (1960) Rotational diffusion constant of a cylindrical particle. J Chem Phys 32(6):1626–1631CrossRefGoogle Scholar
  4. Carr ME Jr, Hermans J (1978) Size and density of fibrin fibers from turbidity. Macromolecules 11(1):46–50CrossRefGoogle Scholar
  5. de Souza Lima M, Wong J, Paillet M, Borsali R, Pecora R (2003) Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir 19(1):24–29CrossRefGoogle Scholar
  6. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New YorkGoogle Scholar
  7. Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8):2404–2409CrossRefGoogle Scholar
  8. Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic–chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082CrossRefGoogle Scholar
  9. Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32CrossRefGoogle Scholar
  10. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315CrossRefGoogle Scholar
  11. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9(1):57–65CrossRefGoogle Scholar
  12. Favier V, Chanzy H, Cavaille J (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18):6365–6367CrossRefGoogle Scholar
  13. Fedors RF (1979) An equation suitable for describing the viscosity of dilute to moderately concentrated polymer solutions. Polymer 20(2):225–228CrossRefGoogle Scholar
  14. Furuta T, Yamahara E, Konishi T, Ise N (1996) Ordering in aqueous cellulose hydrolysate dispersions: an ultra-small-angle X-ray scattering study. Macromolecules 29(27):8994–8995CrossRefGoogle Scholar
  15. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRefGoogle Scholar
  16. Helbert W, Nishiyama Y, Okano T, Sugiyama J (1998) Molecular imaging ofhalocynthia papillosacellulose. J Struct Biol 124(1):42–50CrossRefGoogle Scholar
  17. Hirai A, Inui O, Horii F, Tsuji M (2008) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25(1):497–502CrossRefGoogle Scholar
  18. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10(9):2571–2576CrossRefGoogle Scholar
  19. Marchessault R, Morehead F, Koch MJ (1961) Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16(4):327–344CrossRefGoogle Scholar
  20. Parra-Vasquez ANG, Stepanek I, Davis VA, Moore VC, Haroz EH, Shaver J, Hauge RH, Smalley RE, Pasquali M (2007) Simple length determination of single-walled carbon nanotubes by viscosity measurements in dilute suspensions. Macromolecules 40(11):4043–4047CrossRefGoogle Scholar
  21. Revol J-F, Bradford H, Giasson J, Marchessault R, Gray D (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172CrossRefGoogle Scholar
  22. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromol 14(1):248–253CrossRefGoogle Scholar
  23. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651–660CrossRefGoogle Scholar
  24. Shimizu M, Saito T, Nishiyama Y, Iwamoto S, Yano H, Isogai A, Endo T (2016) Fast and robust nanocellulose width estimation using turbidimetry. Macromol Rapid Commun 37:1581–1586CrossRefGoogle Scholar
  25. Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromol 6(2):1055–1061CrossRefGoogle Scholar
  26. Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175CrossRefGoogle Scholar
  27. Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21(3):1581–1589CrossRefGoogle Scholar
  28. Tanaka R, Saito T, Hondo H, Isogai A (2015) Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions. Biomacromol 16(7):2127–2131CrossRefGoogle Scholar
  29. Tanaka R, Saito T, Hänninen T, Ono Y, Hakalahti M, Tammelin T, Isogai A (2016) Viscoelastic properties of core–shell-structured, hemicellulose-rich nanofibrillated cellulose in dispersion and wet-film states. Biomacromol 17(6):2104–2111CrossRefGoogle Scholar
  30. Terech P, Chazeau L, Cavaille J (1999) A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32(6):1872–1875CrossRefGoogle Scholar
  31. Tozzi EJ, Klingenberg DJ, Scott CT (2008) Correlation of fiber shape measures with dilute suspension properties. Nord Pulp Pap Res J 23(4):369–373CrossRefGoogle Scholar
  32. Wierenga AM, Philipse AP (1996) Low-shear viscosities of dilute dispersions of colloidal rodlike silica particles in cyclohexane. J Colloid Interface Sci 180(2):360–370CrossRefGoogle Scholar
  33. Wohlert J, Bergenstråhle-Wohlert M, Berglund LA (2012) Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence. Cellulose 19(6):1821–1836CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Macromolecular Science, Graduate School of ScienceOsaka UniversityOsakaJapan
  2. 2.Department of Biomaterials Science, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  3. 3.CNRS, CERMAVGrenobleFrance
  4. 4.Univ. Grenoble Alpes, CERMAVGrenobleFrance

Personalised recommendations