, Volume 24, Issue 8, pp 3387–3397 | Cite as

Pyrolysed cellulose nanofibrils and dandelion pappus in supercapacitor application

  • Juhani Virtanen
  • Arno Pammo
  • Jari Keskinen
  • Essi Sarlin
  • Sampo TuukkanenEmail author
Original Paper


Dandelion pappus and wood based nanocellulose fibrils were combined to form films that were subsequently pyrolyzed under low-pressure conditions in a carbon monoxide (CO) rich atmosphere to make supercapacitor electrode material. The electrodes were prepared from these materials and pyrolysed under low-pressure conditions in a carbon monoxide-rich atmosphere. The electrode materials and assembled supercapacitors were electrically and structurally characterized. The assembled six supercapacitors showed specific capacitances per electrode ranging from 1 to 6 F/g and surface resistance of pyrolyzed electrodes ranging from 30 to 170 Ω/□. Finally, equivalent series resistance and leakage current measurements were conducted for three samples, resulting values from 125 to 500 Ω and from 0.5 to 5.5 µA, respectively.


Supercapacitor Nanocellulose Dandelion Pyrolysis 


Author contributions

JV and AP has fabricated the composite electrodes, performed the high temperature pyrolysis, and performed the electrical measurements using Ivium potentiostat, as well as analysed the data. JK has performed the electrical measurements with Maccor equipment. JV, AP and ST has written the most of the manuscript. ES has performed the SEM and EDS analysis. All authors commented the manuscript and gave their approval to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.


  1. Dzuck S (2015) Fraunhofer-Gesellschaft company press release: natural rubber from dandelions. Research news–special issue. 8.6.2015.
  2. Erlandsson J, Durán VL, Granberg H, Sandberg M, Larsson PA, Wågberg L (2016) Macro-and mesoporous nanocellulose beads for use in energy storage devices. Appl Mater Today 5:246–254. doi: 10.1016/j.apmt.2016.09.008 CrossRefGoogle Scholar
  3. Hale AN, Imfeld SM, Hart CE, Gribbins KM, Yoder JA, Collier MH (2010) Reduced seed germination after pappus removal in the North American dandelion (Taraxacum officinale; Asteraceae). Weed Sci 58(4):420–425. doi: 10.1614/WS-D-10-00036.1 CrossRefGoogle Scholar
  4. Isoniemi T, Tuukkanen S, Cameron DC, Simonen J, Toppari JJ (2015) Measuring optical anisotropy in poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) films with added graphene. Org Electron 25:317–323. doi: 10.1016/j.orgel.2015.06.037 CrossRefGoogle Scholar
  5. Keskinen J, Lehtimäki S, Dastpak A, Tuukkanen S, Flyktman T, Kraft T, Railanmaa A, Lupo D (2016) Architectural modifications for flexible supercapacitor performance optimization. Electron Mater Lett 12:795–803. doi: 10.1007/s13391-016-6141-y CrossRefGoogle Scholar
  6. Lehtimäki S, Suominen M, Damlin P, Tuukkanen S, Kvarnström C, Lupo D (2015) Preparation of supercapacitors on flexible substrates with electrodeposited PEDOT/graphene composites. ACS Appl Mater Interface 7(40):22137–22147. doi: 10.1021/acsami.5b05937 CrossRefGoogle Scholar
  7. Lehtimäki S, Tuukkanen S, Pörhönen J, Moilanen P, Virtanen J, Honkanen M, Lupo D (2014) Low-cost, solution processable carbon nanotube supercapacitors and their characterization. Appl Phys A 117(3):1329–1334. doi: 10.1007/s00339-014-8547-4 CrossRefGoogle Scholar
  8. Meng Q, Wang Q, Liu H, Jiang L (2014) A bio-inspired flexible fiber array with an open radial geometry for highly efficient liquid transfer. NPG Asia Mater 6(9):e125. doi: 10.1038/am.2014.70 CrossRefGoogle Scholar
  9. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. doi: 10.1039/C0CS00108B CrossRefGoogle Scholar
  10. Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interface 5(11):4640–4647. doi: 10.1021/am401046x CrossRefGoogle Scholar
  11. Pettersson F, Keskinen J, Remonen T, von Hertzen L, Jansson E, Tappura K, Zhang Y, Wilén C-E, Österbacka R (2014) Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper. J Power Sources 271:298–304. doi: 10.1016/j.jpowsour.2014.08.020 CrossRefGoogle Scholar
  12. Rajala S, Siponkoski T, Sarlin E, Mettänen M, Vuoriluoto M, Pammo A, Juuti J, Rojas OJ, Franssila S, Tuukkanen S (2016) Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl Mater Interface 8(24):15607–15614. doi: 10.1021/acsami.6b03597 CrossRefGoogle Scholar
  13. Schmidt T, Lenders M, Hillebrand A, van Deenen N, Munt O, Reichelt R, Eisenreich W, Fischer R, Prüfer D, Gronover C (2010) Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz. BMC Biochem. doi: 10.1186/1471-2091-11-11 Google Scholar
  14. Torvinen K, Lehtimäki S, Keränen JT, Sievänen J, Vartiainen J, Hellén E, Lupo D, Tuukkanen S (2015) Pigment-cellulose nanofibril composite and its application as a separator-substrate in printed supercapacitors. Electron Mater Lett 11(6):1040–1047. doi: 10.1007/s13391-015-5195-6 CrossRefGoogle Scholar
  15. Tuukkanen S, Lehtimaki S, Jahangir F, Eskelinen A-P, Lupo D, Franssila S (2014). Printable and disposable supercapacitor from nanocellulose and carbon nanotubes. In Proceedings of the 5th electronics system-integration technology conference (ESTC). IEEE, pp 1–6. DOI:  10.1109/ESTC.2014.6962740
  16. United States Department of Agriculture, Agricultural Research Service (2016): full report (all nutrients), 11207, Dandelion greens, raw. Accessible at
  17. van Beilen J, Poirier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25(11):522–529. doi: 10.1016/j.tibtech.2007.08.009 CrossRefGoogle Scholar
  18. Vuorinen T, Zakrzewski M, Rajala S, Lupo D, Vanhala J, Palovuori K, Tuukkanen S (2014) Printable, transparent, and flexible touch panels working in sunlight and moist environments. Adv Funct Mater 24(40):6340–6347. doi: 10.1002/adfm.201401140 CrossRefGoogle Scholar
  19. Wang Z, Carlsson DO, Tammela P, Hua K, Zhang P, Nyholm L, Strømme M (2015) Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9(7):7563–7571. doi: 10.1021/acsnano.5b02846 CrossRefGoogle Scholar
  20. Wang Z, Tammela P, Huo J, Zhang P, Strømme M, Nyholm L (2016) Solution-processed poly(3,4-ethylenedioxythiophene) nanocomposite paper electrodes for high-capacitance flexible supercapacitors. J Mater Chem A 4:1714–1722. doi: 10.1039/C5TA10122K CrossRefGoogle Scholar
  21. Ward H. Herbal Manual. The C. W. Daniel Company Ltd, London. 1936. ISBN-10: 0852430086Google Scholar
  22. Wu C, Wang Z, Huang J, Williams PT (2013a) Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts. Fuel 106:697–706. doi: 10.1016/j.fuel.2012.10.064 CrossRefGoogle Scholar
  23. Wu XL, Wen T, Guo HL, Yang S, Wang X, Xu AW (2013b) Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7(4):3589–3597. doi: 10.1021/nn400566d CrossRefGoogle Scholar
  24. Zolin L, Nair JR, Beneventi D, Bella F, Destro M, Jagdale P, Cannavaroe I, Tagliaferroe A, Chaussy D, Geobaldoe F, Gerbaldi C (2016) A simple route toward next-gen green energy storage concept by nanofibres-based self-supporting electrodes and a solid polymeric design. Carbon 107:811–822. doi: 10.1016/j.carbon.2016.06.076 CrossRefGoogle Scholar
  25. Zu G, Shen J, Zou L, Wang F, Wang X, Zhang Y, Yao X (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99:203–211. doi: 10.1016/j.carbon.2015.11.079 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Biomeditech institute and Faculty of Biomedical Sciences and EngineeringTampere University of TechnologyTampereFinland
  2. 2.Laboratory of Electronics and Communications EngineeringTampere University of TechnologyTampereFinland
  3. 3.Laboratory of Materials ScienceTampere University of TechnologyTampereFinland

Personalised recommendations