Advertisement

Cellulose

, Volume 24, Issue 5, pp 2125–2137 | Cite as

Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste

  • Laetitia CouretEmail author
  • Mark Irle
  • Christophe Belloncle
  • Bernard Cathala
Original Paper

Abstract

This study investigates the potential of wood wastes, specifically post-consumer fiberboards, as a new source for cellulose nanocrystals (CNC). This underused resource has currently no commercially viable way to recycle it and so the volumes of fiberboard waste are growing rapidly. A sequential chemical fractionation was used to separate the three main constituents of wood, namely cellulose, hemicelluloses and lignin, and the non-wood components present in fiberboards, such as resins and finishes (e.g. varnishes, paints, plastics, laminates, etc.). Most of the non-cellulosic components and non-wood elements were removed by an alkali treatment followed by bleaching, resulting in a cellulosic fraction which is suitable for the further isolation of CNC by an acid hydrolysis step. The intermediate and final products were characterized by chemical composition, microscopic, spectroscopic and X-ray diffraction methods. The CNC obtained from wood waste are totally devoid of traces of contaminants and possess comparable characteristics and quality to those extracted from virgin wood fibers. The results indicate that fiberboard wastes can be used as promising alternative source for nanocelluloses production.

Keywords

Wood waste Fiberboards Chemical fractionation Cellulose nanocrystals 

Notes

Acknowledgments

The authors are grateful for the financial support from the MATIERES project and the “Région Pays de la Loire”. We thank Emilie Perrin, INRA, for her excellent technical support for the TEM images.

References

  1. Abitbol T et al (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88. doi: 10.1016/j.copbio.2016.01.002 CrossRefGoogle Scholar
  2. ADEME (2010) Dimensionnement et cadrage de filieres pour la gestion des mobiliers menagers et professionnels usages—Rapport finalGoogle Scholar
  3. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671. doi: 10.1016/j.biortech.2007.04.029 CrossRefGoogle Scholar
  4. Alexandropoulos D, Nakos P, Mantanis G (1998) European approach to particleboard and MDF adhesives. In: Proceedings of 1998 resin and blending seminar, pp 137–146Google Scholar
  5. Andersson S, Serimaa R, Paakkari T, SaranpÄÄ P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537. doi: 10.1007/s10086-003-0518-x Google Scholar
  6. Anonymous (2013) Environmental product declaration: medium density fiberboard, Report. American Wood Council and Canadian Wood CouncilGoogle Scholar
  7. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf Physicochem Eng Asp 142:75–82. doi: 10.1016/S0927-7757(98)00404-X CrossRefGoogle Scholar
  8. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054CrossRefGoogle Scholar
  9. Beele PM (2009) Demonstration of end uses for recovered MDF fibre. WRAP (Waste and Resources Action Programme), Final reportGoogle Scholar
  10. Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299. doi: 10.1016/0008-6215(83)88244-5 CrossRefGoogle Scholar
  11. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489. doi: 10.1016/0003-2697(73)90377-1 CrossRefGoogle Scholar
  12. Briesemeister R (2013) Analyzing the suitability of X-ray fluorescence (XRF) devices for detecting foreign material in recovered wood. Diplomarbeit, Technische Universität ClausthalGoogle Scholar
  13. Brito BL, Pereira F, Putaux J-L, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527–1536. doi: 10.1007/s10570-012-9738-9 CrossRefGoogle Scholar
  14. Chen L, Wang Q, Hirth K, Baez C, Agarwal U, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762. doi: 10.1007/s10570-015-0615-1 CrossRefGoogle Scholar
  15. Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725CrossRefGoogle Scholar
  16. Costa LAS, Assis DdJ, Gomes GVP, Silva JBAd, Fonsêca AF, Druzian JI (2015) Extraction and characterization of nanocellulose from corn stover. Mater Today Proc 2:287–294. doi: 10.1016/j.matpr.2015.04.045 CrossRefGoogle Scholar
  17. de Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromol 11:473–480. doi: 10.1021/bm9011985 CrossRefGoogle Scholar
  18. Dinand E, Chanzy H, Vignon MR (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3:183–188. doi: 10.1007/bf02228800 CrossRefGoogle Scholar
  19. Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. In: Heinze T (ed) Polysaccharides I, vol 186., Advances in polymer scienceSpringer, Berlin Heidelberg, pp 1–67. doi: 10.1007/b136816 CrossRefGoogle Scholar
  20. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65. doi: 10.1021/bm700769p CrossRefGoogle Scholar
  21. Emandi A, Ileana Vasiliu C, Budrugeac P, Stamatin I (2011) Quantitative investigation of wood composition by integrated FT-IR and thermogravimetric methods. Cellul Chem Technol 45:579Google Scholar
  22. EPF (2016) Annual Report 2015–2016. European Panel Federation, BrusselsGoogle Scholar
  23. FAOSTAT (2015) Forestry production and trade. http://faostat3.fao.org/browse/F/FO/E. Accessed 17 Feb 2016
  24. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. W. de Gruyter, BerlinGoogle Scholar
  25. Ganne-Chédeville C, Jääskeläinen A-S, Froidevaux J, Hughes M, Navi P (2012) Natural and artificial ageing of spruce wood as observed by FTIR-ATR and UVRR spectroscopy. Holzforschung 66:163–170CrossRefGoogle Scholar
  26. Garcia de Rodriguez LN, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270. doi: 10.1007/s10570-005-9039-7 CrossRefGoogle Scholar
  27. Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687CrossRefGoogle Scholar
  28. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi: 10.1021/cr900339w CrossRefGoogle Scholar
  29. Hubbe M, Rojas O, Lucia L, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980Google Scholar
  30. Izydorczyk MS, Macri LJ, MacGregor AW (1998) Structure and physicochemical properties of barley non-starch polysaccharides—II. Alkaliextractable β-glucans and arabinoxylans. Carbohydr Polym 35:259–269. doi: 10.1016/S0144-8617(97)00136-7 CrossRefGoogle Scholar
  31. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99. doi: 10.1016/j.indcrop.2011.12.016 CrossRefGoogle Scholar
  32. Jonoobi M, Khazaeian A, Tahir PM, Azry SS, Oksman K (2011) Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18:1085–1095CrossRefGoogle Scholar
  33. Kandelbauer A, Despres A, Pizzi A, Taudes I (2007) Testing by Fourier transform infrared species variation during melamine-urea-formaldehyde resin preparation. J Appl Polym Sci 106:2192–2197. doi: 10.1002/app.26757 CrossRefGoogle Scholar
  34. Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866CrossRefGoogle Scholar
  35. Kearley V, Goroyias G (2004) Wood panel recycling at a semi-industrial scale. In: Proceedings of the 8th European panel products symposium, pp 1–18Google Scholar
  36. Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. In: Klemm D (ed) Polysaccharides II, vol 205., Advances in polymer scienceSpringer, Berlin Heidelberg, pp 49–96. doi: 10.1007/12_097 CrossRefGoogle Scholar
  37. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  38. Le Normand M, Moriana R, Ek M (2014) Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydr Polym 111:979–987. doi: 10.1016/j.carbpol.2014.04.092 CrossRefGoogle Scholar
  39. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299. doi: 10.1016/j.carbpol.2011.06.030 CrossRefGoogle Scholar
  40. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi: 10.1039/C0CS00108B CrossRefGoogle Scholar
  41. Morán J, Alvarez V, Cyras V, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. doi: 10.1007/s10570-007-9145-9 CrossRefGoogle Scholar
  42. Morelli CL, Marconcini JM, Pereira FV, Bretas RES, Branciforti MC (2012) Extraction and characterization of cellulose nanowhiskers from balsa wood. Macromol Symposia 319:191–195. doi: 10.1002/masy.201100158 CrossRefGoogle Scholar
  43. Moriana R, Vilaplana F, Ek M (2015) Forest residues as renewable resources for bio-based polymeric materials and bioenergy: chemical composition, structure and thermal properties. Cellulose 22:3409–3423. doi: 10.1007/s10570-015-0738-4 CrossRefGoogle Scholar
  44. Moriana R, Vilaplana F, Ek M (2016) Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro- to nano-dimensions. Carbohydr Polym 139:139–149. doi: 10.1016/j.carbpol.2015.12.020 CrossRefGoogle Scholar
  45. Pandey K (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71:1969–1975CrossRefGoogle Scholar
  46. Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. doi: 10.1186/1754-6834-3-10 CrossRefGoogle Scholar
  47. Park Y-K, Park K-S, Park SH (2013) Fast pyrolysis of medium-density fiberboard using a fluidized bed reactor. Appl Chem Eng 24:672–675CrossRefGoogle Scholar
  48. Qing Y, Sabo R, Zhu J, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234CrossRefGoogle Scholar
  49. Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164CrossRefGoogle Scholar
  50. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172. doi: 10.1016/s0141-8130(05)80008-x CrossRefGoogle Scholar
  51. Revol J-F, Godbout L, Dong X-M, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16:127–134CrossRefGoogle Scholar
  52. Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2005) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites, chap 3. CRC press, Boca Raton, pp 35–74Google Scholar
  53. Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. Acs Appl Mater Interfaces 6:6127–6138. doi: 10.1021/am500359f CrossRefGoogle Scholar
  54. Stevanovic T, Perrin D (2009) Chimie du bois. Presses polytechniques et universitaires romandesGoogle Scholar
  55. Tonoli G, Teixeira E, Corrêa A, Marconcini J, Caixeta L, Pereira-da-Silva M, Mattoso L (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88CrossRefGoogle Scholar
  56. Wise LE (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Vance, LincolnshireGoogle Scholar
  57. Xiao B, Sun XF, Sun R (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74:307–319. doi: 10.1016/S0141-3910(01)00163-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Laetitia Couret
    • 1
    • 2
    Email author
  • Mark Irle
    • 1
  • Christophe Belloncle
    • 1
  • Bernard Cathala
    • 2
  1. 1.LIMBHA, Ecole Supérieure du BoisLUNAM UniversitéNantesFrance
  2. 2.BIA, INRANantesFrance

Personalised recommendations