Advertisement

Cellulose

, Volume 24, Issue 5, pp 2205–2213 | Cite as

Bistable thermo-chromic and magnetic spin crossover microcrystals embedded in nata de coco bacterial cellulose biofilm

  • Djulia OnggoEmail author
  • Irma Mulyani
  • Francisco Javier Valverde-Muñoz
  • José Antonio RealEmail author
  • Gabor Molnar
Original Paper

Abstract

Bacterial cellulose (BC) is a unique biomaterial with interesting physico-chemical properties and potential technological applications (i.e. removal of heavy metals from wastewater, manufacturing electrical and electronic devices, papermaking and biomedical technologies among others). In this work, we describe the growth of well formed micro-crystals of the one-dimensional spin crossover (SCO) compound {[Fe(Htrz)2(trz)](BF4)}n in a matrix of BC. The thermal dependence of the magnetic, optical, calorimetric and vibrational properties associated with the SCO properties of the resulting composite material have been investigated and compare well with those of the bulk SCO. The SCO-BC composite films display reversible thermomagnetic (diamagnetic ↔ paramagnetic) and thermochromic bistability (purple ↔ pale-yellow) determined by a well-defined hysteresis in the temperature range ca. 345–380 K where these properties depend on the history of the sample (memory effect).

Keywords

Bacterial cellulose Iron(II) complex Spin crossover Composite material Environmental responsive materials 

Notes

Acknowledgments

D.O. wish to express special thanks to Prof. H. A. Goodwin for giving inspiration in exploring SCO and for Research funding ITB No. 254/I.1.C01/PL/2011. J.A.R. thanks the Spanish Ministerio de Economía y Competitividad (MINECO) and FEDER funds (CTQ2013-46275-P and CTQ2016-78341-P and Unidad de Excelencia María de Maeztu (MDM-2015-0538) and Generalitat Valenciana (PROMETEO/2016/147). F.J.V.M. thanks the MINECO for a predoctoral FPI fellowship.

Supplementary material

10570_2017_1248_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1267 kb)

References

  1. Armand F, Badoux C, Bonville P, Ruaudel-Teixier A, Khan O (1995) Langmuir-Blodgett films of spin transition iron(II) metalloorganic polymers. 1. Iron(II) complexes of octadecyl-1,2,4-triazole. Langmuir 11(9):3467–3472. doi: 10.1021/la00009a032 CrossRefGoogle Scholar
  2. Chen P, Cho SY, Jin H-J (2010a) Modification and applications of bacterial celluloses in polymer science. Macromol Res 18(4):309–320. doi: 10.1007/s13233-010-0404-5 CrossRefGoogle Scholar
  3. Chen Y, Ma J-G, Zhang J-J, Shi W, Cheng P, Liao D-Z, Yan S-P (2010b) Spin crossover-macromolecule composite nano film material. Chem Commun 46(28):5073–5075. doi: 10.1039/b927191k CrossRefGoogle Scholar
  4. Dîrtu MM, Neuhausen C, Naik AD, Rotaru A, Spinu L, Garcia Y (2010) Insights into the origin of cooperative effects in the spin transition of [Fe(NH2trz)3](NO3)2: the role of supramolecular interactions evidenced in the crystal structure of [Cu(NH2trz)3](NO3)2·H2O. Inorg Chem 49(12):5723–5736. doi: 10.1021/ic100667f CrossRefGoogle Scholar
  5. Garcia J, Neil V, Munoz MC, Real JA (2004) Spin crossover in 1D, 2D and 3D polymeric Fe(II) networks. Top Curr Chem 233:229–257CrossRefGoogle Scholar
  6. Grondin P, Roubeau O, Castro M, Saadaoui H, Colin A, Clérac R (2010) Multifunctional gels from polymeric spin-crossover metallo-gelators. Langmuir 26(7):5184–5195. doi: 10.1021/la903653d CrossRefGoogle Scholar
  7. Grosjean A, Daro N, Kauffmann B, Kaiba A, Létard J-F, Guinneau P (2011) The 1-D polymeric structure of the [Fe(NH2trz)3](NO3)2·nH2O (with n = 2) spin crossover compound proven by single crystal investigations. Chem Commun 47(45):12382–12384. doi: 10.1039/c1cc14220h CrossRefGoogle Scholar
  8. Grosjean A, Négrier P, Bordet P, Etrillard C, Mondieig D, Pechev S, Lebraud E, Létard J-F (2013) Guionneau P (2013) Crystal structures and spin crossover in the polymeric material [Fe(Htrz)2(trz)](BF4) including coherent-domain size reduction effects. Eur J Inorg Chem 5–6:796–802. doi: 10.1002/ejic.201201121 CrossRefGoogle Scholar
  9. Guillaume F, Tobon YA, Bonhommeau S, Létard J-F, Moulet L, Freysz E (2014) Photoswitching of the spin crossover polymeric material [Fe(Htrz)2(trz)](BF4) under continuous laser irradiation in a Raman scattering experiment. Chem Phys Lett 604:105–109. doi: 10.1016/j.cplett.2014.04.024 CrossRefGoogle Scholar
  10. Gütlich P, Goodwin HA (2004) Spin crossover in transition metal compounds I–III. Topics in current chemistry. Springer, BerlinGoogle Scholar
  11. Halcrow MA (2013) Spin-crossover materials. Wiley, OxfordCrossRefGoogle Scholar
  12. Hauser A (2004) Ligand field theoretical considerations. Spin crossover in transition metal compounds I, vol 233. Springer, Berlin, pp 49–58CrossRefGoogle Scholar
  13. Hayami S, Miyazaki S, Kawamata J, Inoue K (2009) Second-order non-linear optical response in LB films for the metal complexes. Polyhedron 28(9):1722–1727. doi: 10.1016/j.poly.2008.10.059 CrossRefGoogle Scholar
  14. Kahn O, Martinez CJ (1998) Spin-transition polymers: from molecular materials toward memory devices. Science 279(5347):44–48. doi: 10.1126/science.279.5347.44 CrossRefGoogle Scholar
  15. Krober J, Codjovi E, Kahn O, Groliere F, Jay C (1993) A spin transition system with a thermal hysteresis at room temperature. J Am Chem Soc 115(21):9810–9811. doi: 10.1021/ja00074a062 CrossRefGoogle Scholar
  16. Krober J, Audiere J-P, Claude R, Codjovi E, Kahn O, Haasnoot JG, Groliere F, Jay C, Bousseksou A (1994) Spin transitions and thermal hysteresis in the molecular-based materials [Fe(Htrz)2(trz)](BF4) and [Fe(Htrz)3](BF4)2·H2O (Htrz = 1,2,4-4H-triazole; trz = 1,2,4-triazolato). Chem Mater 6(8):1404–1412. doi: 10.1021/cm00044a044 CrossRefGoogle Scholar
  17. Kuroiwa K, Kimizuka N (2010) Electrochemically controlled self-assembly of lipophilic Fe(II) 1,2,4-triazole complexes in chloroform. Chem Lett 39(7):790–791. doi: 10.1246/cl.2010.790 CrossRefGoogle Scholar
  18. Kuroiwa K, Kikuchi H, Kimizuka N (2010) Spin crossover characteristics of nanofibrous Fe(II)-1,2,4-triazole complexes in liquid crystals. Chem Commun 46(8):1229–1231. doi: 10.1039/b920631k CrossRefGoogle Scholar
  19. Lee S-W, Lee J-W, Jeong S-H, Park I-W, Kim Y-M, Jin J-I (2004) Processable magnetic plastics composites-spin crossover of PMMA/Fe(II)-complexes composites. Synth Met 142(1):243–249. doi: 10.1016/j.synthmet.2003.09.011 CrossRefGoogle Scholar
  20. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72(1):43–51. doi: 10.1016/j.carbpol.2007.07.025 CrossRefGoogle Scholar
  21. Moussa NO, Ostrovskii D, Garcia VM, Molnár G, Tanaka K, Gaspar AB, Real JA, Bousseksou A (2009) Bidirectional photo-switching of the spin state of iron(II) ions in a triazol based spin crossover complex within the thermal hysteresis loop. Chem Phys Lett 477(1):156–159. doi: 10.1016/j.cplett.2009.06.065 CrossRefGoogle Scholar
  22. Nagy V, Halásza K, Carayon M-T, Gural’skiyb IA, Tricardb S, Molnárb G, Bousseksoub A, Salmon L, Csókaa L (2014) Cellulose fiber nanocomposites displaying spin-crossover properties. Colloids Surf A Physicochem Eng Asp 456:35–40. doi: 10.1016/j.colsurfa.2014.05.007 CrossRefGoogle Scholar
  23. Nagy V, Suleimanov I, Molnar G, Salmon L, Bousseksou A, Csoka L (2015) Cellulose-spin crossover particle composite papers with reverse printing performance: a proof of concept. J Mater Chem C 3(30):7897–7905. doi: 10.1039/c5tc01246e CrossRefGoogle Scholar
  24. Naik AD, Stappers L, Snauwaert J, Fransaer J, Garcia Y (2010) A biomembrane stencil for crystal growth and soft lithography of a thermochromic molecular sensor. Small 6(24):2842–2846. doi: 10.1002/smll.201001527 CrossRefGoogle Scholar
  25. Nakamoto A, Ono Y, Kojima N, Matsumura D, Yokoyama T (2003) Spin crossover complex film, [Fe(II)(Htrz)3]-nafion, with a spin transition around room temperature. Chem Lett 32(4):336–337. doi: 10.1246/cl.2003.336 CrossRefGoogle Scholar
  26. Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10):1849–1852. doi: 10.1002/adma.200702559 CrossRefGoogle Scholar
  27. Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, Ström V, Berglund L, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5(8):584–588. doi: 10.1038/nnano.2010.155 CrossRefGoogle Scholar
  28. Onggo D, Real JA, Mulyani I, Syahbanu I, Aminah M (2011) The study of thermal spin crossover tris amino triazole iron(II) complex in natural biopolymer nata de coco. In: XXIII international conference on coordination and bioinorganic chemistry (ICCBIC). Press of Slovak University of Technology, Bratislava, SlovakiaGoogle Scholar
  29. Putri O (2013) Chemical formula verification of iron(II)-1,2,4-4H-triazole with tetrafluoroborate and perchlorate counter ions inside nata de coco biopolymer Matrix. Chemistry Master Thesis, Institut Teknologi BandungGoogle Scholar
  30. Quintero CM, Gural’skiy IA, Salmon L, Molnár G, Bergaud C, Bousseksou A (2012) Soft lithographic patterning of spin crossover complexes. Part 1: fluorescent detection of the spin transition in single nano-objects. J Mater Chem 22(9):3745–3751. doi: 10.1039/c2jm15662h CrossRefGoogle Scholar
  31. Radiman C, Yuliani G (2008) Coconut water as a potential resource for cellulose acetate membrane preparation. Polym Int 57(3):502–508. doi: 10.1002/pi.2374 CrossRefGoogle Scholar
  32. Rat S, Nagy V, Suleimanov I, Molnár G, Salmon L, Demont P, Csóka L, Bousseksou A (2016) Elastic coupling between spin-crossover particles and cellulose fibers. Chem Commun 52:11267–11269. doi: 10.1039/C6CC06137K CrossRefGoogle Scholar
  33. Roubeau O (2012) Triazole-based one-dimensional spin-crossover coordination polymers. Chem Eur J 18(48):15230–15244. doi: 10.1002/chem.201201647 CrossRefGoogle Scholar
  34. Roubeau O, Natividad E, Agricole B, Ravaine S (2007) Formation, structure, and morphology of triazole-based Langmuir–Blodgett films. Langmuir 23(6):3110–3117. doi: 10.1021/la062207x CrossRefGoogle Scholar
  35. Rubio M, Hernández R, Nogales A, Roig A, López D (2011) Structure of a spin-crossover Fe(II)-1,2,4-triazole polymer complex dispersed in an isotactic polystyrene matrix. Eur Polym J 47(1):52–60. doi: 10.1016/j.eurpolymj.2010.10.029 CrossRefGoogle Scholar
  36. Smit E, Manoun B, de Waal D (2001) Low-wavenumber Raman spectra of the spin-transition complexes [Fe(NH2trz)3](ClO4)2 and [Fe(Htrz)3](ClO4)2. J Raman Spectrosc 32(5):339–344. doi: 10.1002/jrs.696 CrossRefGoogle Scholar
  37. Thibault C, Molnár G, Salmon L, Bousseksou A, Vieu C (2010) Soft lithographic patterning of spin crossover nanoparticles. Langmuir 26(3):1557–1560. doi: 10.1021/la904162m CrossRefGoogle Scholar
  38. Tobon YA, Etrillard C, Nguyen O, Létard J-F, Faramarzi V, Dayen J-F, Doudin B, Bassani DM, Guillaume F (2012) Resonance Raman study of spin-crossover [Fe(Htrz)2(trz)](BF4)·H2O particles coated with gold. Eur J Inorg Chem 35:5837–5842. doi: 10.1002/ejic.201200562 CrossRefGoogle Scholar
  39. Urakawa A, Van Beek W, Monrabal-Capilla M, Galán-Mascarós JR, Palin L, Milanesio M (2011) Combined, modulation enhanced X-ray powder diffraction and Raman spectroscopic study of structural transitions in the spin crossover material [Fe(Htrz)2(trz)](BF4). J Phys Chem C 2:1323–1329. doi: 10.1021/jp107206n CrossRefGoogle Scholar
  40. Walther A, Timonen JVI, Díez I, Laukkanen A, Ikkala O (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23(26):2924–2928. doi: 10.1002/adma.201100580 CrossRefGoogle Scholar
  41. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155. doi: 10.3390/ma7010016 CrossRefGoogle Scholar
  42. Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21(6):4455–4469. doi: 10.1007/s10570-014-0408-y CrossRefGoogle Scholar
  43. Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116(16):9305–9374. doi: 10.1021/acs.chemrev.6b00225 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Djulia Onggo
    • 1
    Email author
  • Irma Mulyani
    • 1
  • Francisco Javier Valverde-Muñoz
    • 2
  • José Antonio Real
    • 2
    Email author
  • Gabor Molnar
    • 3
  1. 1.Inorganic and Physical Chemistry Research Group, Faculty of Mathematics and Natural SciencesInstitut Teknologi BandungBandungIndonesia
  2. 2.Institut de Ciencia Molecular (ICMol)Universitat de ValènciaPaternaSpain
  3. 3.LCCCNRS and Université de Toulouse (UPS, INP)ToulouseFrance

Personalised recommendations