Advertisement

Cellulose

, Volume 24, Issue 3, pp 1579–1595 | Cite as

Thermal degradations of used cotton fabrics and of cellulose: kinetic and heat transfer modeling

  • Alain BrillardEmail author
  • David Habermacher
  • Jean-François Brilhac
Original Paper

Abstract

The thermal degradations of small samples of different used cotton fabrics and of cellulose, in comparison, in a thermogravimetric balance are considered under non-oxidative (100% N\(_{2}\)) or oxidative (20% O\(_{2}\), 80% N\(_{2}\)) atmospheres and for different temperature ramps (5–50 K min\(^{-1}\)). The associated kinetic parameters are determined for low temperature ramps using a differential isoconversional method or an Extended Independent Parallel Reaction model, with different reaction functions, and they are compared. Because these values of the kinetic parameters do not simulate in an appropriate way the thermal degradations of the materials at higher temperature ramps, a heat transfer model is proposed, which brings corrections to the temperature really acting inside the samples. With these corrections, the experimental and simulated mass loss rate curves do better superimpose, which leads to values of the kinetic parameters which are independent of the temperature ramp.

Keywords

Cotton pyrolysis Cellulose pyrolysis Thermogravimetric analysis Temperature ramp Kinetic modeling Heat transfer model 

Notes

Acknowledgments

We thank Mrs. Chloée Roumegoux for the experiments concerning the thermal degradation of used cottons she did during her training period at LGRE and Mrs. Damaris Kehrli for her support during the different experiments leading to the current study. Part of this work has been supported by PHC Toubkal No 15-08 that we thank, together with Mrs. Riane Hajjami. The authors thank the anonymous referees whose comments contributed to improve a previous version of this work.

References

  1. Alongi J, Camino G, Malucelli G (2013) Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics. Carbon Polym 92:1327–1334. doi: 10.1016/j.carbpol.2012.10.029 CrossRefGoogle Scholar
  2. Amutio M, Lopez G, Aguado R, Artetxe M, Bilbao J, Olazar M (2012) Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel 95:305–311. doi: 10.1016/j.fuel.2011.10.008 CrossRefGoogle Scholar
  3. Arseneau DF (1971) Competitive reactions in the thermal decomposition of cellulose. Can J Chem 49:632–638CrossRefGoogle Scholar
  4. Babu BV, Chaurasia AS (2004a) Heat transfer and kinetics in the pyrolysis of shrinking biomass particle. Chem Eng Sci 59:1999–2012. doi: 10.1016/j.ces.2004.01.050
  5. Babu BV, Chaurasia AS (2004b) Pyrolysis of biomass: improved models for simultaneous kinetics and transport of heat, mass and momentum. Energy Convers Manag 45:1297–1327. doi: 10.1016/j.enconman.2003.09.013 CrossRefGoogle Scholar
  6. Bourbigot S, Chlebicki S, Mamleev V (2002) Thermal degradation of cotton under linear heating. Polym Degrad Stabil 78:57–62. doi: 10.1016/S0141-3910(02)00119-2 CrossRefGoogle Scholar
  7. Brown ME (1997) The Prout-Tompkins rate equation in solid–state kinetics. Thermochim Acta 300:93–106. doi: 10.1016/S0040-6031(96)03119-X CrossRefGoogle Scholar
  8. Cabrales L, Abidi N (2010) On the thermal degradation of cellulose in cotton fibers. J Thermal Anal Calor 102(2):485–491. doi: 10.1007/s10973-010-0911-9 CrossRefGoogle Scholar
  9. Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102:6230–6238. doi: 10.1016/j.biortech.2011.02.060 CrossRefGoogle Scholar
  10. Demirbas A (2010) Fuels from Biomass, chapter 2. Springer, Berlin, Biorefineries for biomass upgrading facilities. doi: 10.1007/978-1-84882-721-9_2
  11. Ding HZ, Wang ZD (2008) On the degradation evolution equations of cellulose. Cellulose 15(2):205–224. doi: 10.1007/s10570-007-9166-4 CrossRefGoogle Scholar
  12. Dorez G, Ferry L, Sonnier R, Taguet A, Lopez-Cuesta JM (2014) Effect of cellulose, hemicellulose and lignin contents on pyrolysis andcombustion of natural fibers. J Anal Appl Pyrol 107:323–331. doi: 10.1016/j.jaap.2014.03.017 CrossRefGoogle Scholar
  13. Emsley AM, Stevens GC (1994) Kinetics and mechanisms of the low-temperature degradation of cellulose. Cellulose 1:26–56. doi: 10.1007/BF00818797 CrossRefGoogle Scholar
  14. Gaan S, Sun G (2009) Effect of nitrogen additives on thermal decomposition of cotton. J Anal Appl Pyrol 84:108–115. doi: 10.1016/j.jaap.2008.12.004 CrossRefGoogle Scholar
  15. Horrocks AR, Price D, Alkalin M (1996) FTIR analysis of gases evolved from cotton and flame retarded cotton fabrics pyrolysed in air. Polym Degrad Stabil 52:205–213. doi: 10.1016/0141-3910(96)00017-1 CrossRefGoogle Scholar
  16. Lewin M (ed) (2007) Handbook of fiber chemistry. CRC Press, Boca Raton. ISBN 9780824725655Google Scholar
  17. Miranda R, Sosa-Blanco C, Bustos-Martınez D, Vasile C (2007) Pyrolysis of textile wastes I. Kinetics and yields. J Anal Appl Pyrol 80:489–495. doi: 10.1016/j.jaap.2007.03.008 CrossRefGoogle Scholar
  18. Molto J, Font R, Conesa JA, Martin-Gullon I (2006) Thermogravimetric analysis during the decomposition of cotton fabrics in an inert and air environment. J Anal Appl Pyrol 76:124–131. doi: 10.1016/j.jaap.2005.09.001 CrossRefGoogle Scholar
  19. Molto J, Font R, Conesa JA (2007) Kinetic model of the decomposition of a PET fibre cloth in an inert and air environment. J Anal Appl Pyrol 79:289–296. doi: 10.1016/j.jaap.2006.12.006 CrossRefGoogle Scholar
  20. Muralidhara KS, Sreenivasan S (2010) Thermal degradation kinetic data of polyester, cotton and polyester-cotton blended textile material. World Appl Sci J 11(2):184–189Google Scholar
  21. Orfao JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials-three independent reactions model. Fuel 78:349–358. doi: 10.1016/S0016-2361(98)00156-2 CrossRefGoogle Scholar
  22. Pan H, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via Layer-by-Layer assembly of chitin derivatives. Carbo Polym 115:516–524. doi: 10.1016/j.carbpol.2014.08.084 CrossRefGoogle Scholar
  23. Pérez-Maqueda LA, Criado JM, Sanchez-Jimenez PE (2006) Combined kinetic analysis of solid–state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A 110(45):12456–12462. doi: 10.1021/jp064792g CrossRefGoogle Scholar
  24. Pérez-Maqueda LA, Sánchez-Jiménez PE, Perejó n A, García-Garrido C, Criado JM, Benítez-Guerrero M, (2014) Scission kinetic model for the prediction of polymer pyrolysiscurves from chain structure. Polymer Testing 37:1–5. doi: 10.1016/j.polymertesting.2014.04.004
  25. Rueda-Ordonez YJ, Tannous K (2015) Isoconversional kinetic study of the thermal decomposition of sugarcane straw for thermal conversion processes. Bioresour Technol 196:136–144. doi: 10.1016/j.biortech.2015.07.062 CrossRefGoogle Scholar
  26. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Pascual-Cosp J, Benıtez-Guerrero M, Criado JM (2011) An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose 18:1487–1498. doi: 10.1007/s10570-011-9602-3 CrossRefGoogle Scholar
  27. Tian CM, Shi ZH, Zhang HY, Xu JZ, Shi JR, Guo HZ (1999) Thermal degradation of cotton cellulose. J Thermal Anal Calor 55(1):93–98. doi: 10.1023/A:1010132121811 CrossRefGoogle Scholar
  28. Valente M, Brillard A, Schönnenbeck C, Brilhac JF (2015) Investigation of grape marc combustion using thermogravimetric analysis. Kinetic modeling using an extended independent parallel reaction (EIPR). Fuel Process Technol 131:297–303. doi: 10.1016/j.fuproc.2014.10.034 CrossRefGoogle Scholar
  29. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P (2003) Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel 82:1949–1960. doi: 10.1016/S0016-2361(03)00153-4 CrossRefGoogle Scholar
  30. Vekemans O, Laviholette JP, Caouki J (2015) Thermal behavior of an engineered fuel and its constituents for a large range of heating rates with emphasis on heat transfer limitations. Thermochim Acta 601:54–62. doi: 10.1016/j.tca.2014.12.007 CrossRefGoogle Scholar
  31. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. doi: 10.1016/j.tca.2011.03.034 CrossRefGoogle Scholar
  32. Yu J, Paterson N, Blamey J, Millan M (2017) Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel 191:140–149. doi: 10.1016/j.fuel.2016.11.057 CrossRefGoogle Scholar
  33. Zabaniotou AA, Roussos AI, Koroneos CJ (2000) A laboratory study of cotton gin waste pyrolysis. J Anal Appl Pyrol 56:47–59. doi: 10.1016/S0165-2370(00)00088-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Université de Haute-Alsace, Institut J.B. Donnet, Laboratoire Gestion des Risques et Environnement (EA2334)Mulhouse CedexFrance

Personalised recommendations