, Volume 24, Issue 3, pp 1287–1293 | Cite as

Hybrid fluorescent nanoparticles from quantum dots coupled to cellulose nanocrystals

  • Tiffany AbitbolEmail author
  • Heera S. Marway
  • Stephanie A. Kedzior
  • Xuan Yang
  • Anne Franey
  • Derek G. Gray
  • Emily D. Cranston
Original Paper


Carboxylated cellulose nanocrystals (CNCs) were decorated with CdSe/ZnS quantum dots (QDs) using a carbodiimide chemistry coupling approach. The one-step covalent modification was supported by nanoscale imaging, which showed QDs clustered on and around the CNCs after coupling. The QD–CNC hybrid nanoparticles remained colloidally stable in aqueous suspension and were fluorescent, exhibiting the broad excitation and narrow emission profile characteristic of the QDs. QD–CNCs in nanocomposite films imparted strong fluorescence within CNC-compatible matrices at relatively low loadings (0.15 nmol QDs/g of dry film), without altering the overall physical properties or self-assembly of the CNCs. The hybrid QD–CNCs may find applications in nanoparticle tracking, bio-imaging, optical/sensing devices, and anti-counterfeit technologies.


Cellulose nanocrystals Quantum dots Fluorescent nanoparticles Hybrid nanoparticles 



The authors thank Professors Jose Moran-Mirabal and David Latulippe for instrument access. Helpful discussions with Amit Rivkin and Yuval Nevo are acknowledged. TA is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship. This work was carried out using instruments in the Biointerfaces Institute and the Canadian Centre for Electron Microscopy at McMaster University. Funding from the Natural Sciences and Engineering Research Council of Canada (Discovery Grant RGPIN 402329) as well as NSERC Engage Grant EGP468835 with Advanced Cellulosic Material is gratefully acknowledged.

Supplementary material

10570_2016_1188_MOESM1_ESM.docx (3.8 mb)
Supplementary material 1 (DOCX 3887 kb)


  1. Abitbol T, Gray D (2007) CdSe/ZnS QDs embedded in cellulose triacetate films with hydrophilic surfaces. Chem Mater 19:4270–4276CrossRefGoogle Scholar
  2. Abitbol T, Gray DG (2009) Incorporation into paper of cellulose triacetate films containing semiconductor nanoparticles. Cellulose 16:319–326CrossRefGoogle Scholar
  3. Abitbol T, Wilson JT, Gray DG (2011) Electrospinning of fluorescent fibers from CdSe/ZnS quantum dots in cellulose triacetate. J Appl Polym Sci 119:803–810. doi: 10.1002/app.32782 CrossRefGoogle Scholar
  4. Abitbol T, Palermo A, Moran-Mirabal JM, Cranston ED (2013) Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents. Biomacromolecules 14:3278–3284CrossRefGoogle Scholar
  5. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27. doi: 10.1021/la001070m CrossRefGoogle Scholar
  6. Asadi A, Miller M, Moon RJ, Kalaizidou K (2016) Improving the interfacial and mechanical properties of short glass fiber/epoxy composites by coating the glass fibers with cellulose nanocrystals. Express Polym Lett 10:587–597. doi: 10.3144/expresspolymlett.2016.54 CrossRefGoogle Scholar
  7. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. doi: 10.1021/bm049300p CrossRefGoogle Scholar
  8. Benaissi K, Johnson L, Walsh DA, Thielemans W (2010) Synthesis of platinum nanoparticles using cellulosic reducing agents. Green Chem 12:220–222. doi: 10.1039/B913218J CrossRefGoogle Scholar
  9. Cao Y, Zavattieri P, Youngblood J et al (2016) The relationship between cellulose nanocrystal dispersion and strength. Constr Build Mater 119:71–79. doi: 10.1016/j.conbuildmat.2016.03.077 CrossRefGoogle Scholar
  10. Capron I, Cathala B (2013) Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 14:291–296. doi: 10.1021/bm301871k CrossRefGoogle Scholar
  11. Castro-Guerrero CF, Gray DG (2014) Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21:2567–2577. doi: 10.1007/s10570-014-0308-1 CrossRefGoogle Scholar
  12. Chan WC, Maxwell DJ, Gao X et al (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46. doi: 10.1016/S0958-1669(02)00282-3 CrossRefGoogle Scholar
  13. Chen L, Liu Y, Lai C et al (2015) Aqueous synthesis and biostabilization of CdS@ZnS quantum dots for bioimaging applications. Mater Res Express 2:105401. doi: 10.1088/2053-1591/2/10/105401 CrossRefGoogle Scholar
  14. Chen L, Lai C, Marchewka R et al (2016) CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications. Nanoscale. doi: 10.1039/C6NR03039D Google Scholar
  15. Dash R, Li Y, Ragauskas AJ (2012) Cellulose nanowhisker foams by freeze casting. Carbohydr Polym 88:789–792. doi: 10.1016/j.carbpol.2011.12.035 CrossRefGoogle Scholar
  16. De France KJ, Chan KJW, Cranston ED, Hoare T (2016) Enhanced mechanical properties in cellulose nanocrystal–poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 17:649–660. doi: 10.1021/acs.biomac.5b01598 CrossRefGoogle Scholar
  17. Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811. doi: 10.1021/ja076196l CrossRefGoogle Scholar
  18. Drogat N, Granet R, Sol V et al (2010) Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J Nanoparticle Res 13:1557–1562. doi: 10.1007/s11051-010-9995-1 CrossRefGoogle Scholar
  19. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi: 10.1021/cr900339w CrossRefGoogle Scholar
  20. Hermanson GT (2013) Bioconjugate techniques. Academic Press, New YorkGoogle Scholar
  21. Hu Z, Ballinger S, Pelton R, Cranston ED (2015) Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J Colloid Interface Sci 439:139–148. doi: 10.1016/j.jcis.2014.10.034 CrossRefGoogle Scholar
  22. Huang JL, Li CJ, Gray DG (2013) Cellulose nanocrystals incorporating fluorescent methylcoumarin groups. ACS Sustain Chem Eng 1:1160–1164. doi: 10.1021/sc400074e CrossRefGoogle Scholar
  23. Kalashnikova I, Bizot H, Bertoncini P et al (2013) Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 9:952–959. doi: 10.1039/C2SM26472B CrossRefGoogle Scholar
  24. Lam E, Hrapovic S, Majid E et al (2012) Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale 4:997. doi: 10.1039/c2nr11558a CrossRefGoogle Scholar
  25. Leung ACW, Hrapovic S, Lam E et al (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305. doi: 10.1002/smll.201001715 CrossRefGoogle Scholar
  26. Lokanathan AR, Uddin KMA, Rojas OJ, Laine J (2014) Cellulose nanocrystal-mediated synthesis of silver nanoparticles: role of sulfate groups in nucleation phenomena. Biomacromolecules 15:373–379. doi: 10.1021/bm401613h CrossRefGoogle Scholar
  27. Mooney J (2015) A microscopic picture of surface charge trapping in semiconductor nanocrystals. McGill University, MontrealGoogle Scholar
  28. Mooney J, Krause MM, Saari JI, Kambhampati P (2013) A microscopic picture of surface charge trapping in semiconductor nanocrystals. J Chem Phys 138:204705. doi: 10.1063/1.4807054 CrossRefGoogle Scholar
  29. Mooney J, Krause MM, Kambhampati P (2014) Connecting the dots: the kinetics and thermodynamics of hot, cold, and surface-trapped excitons in semiconductor nanocrystals. J Phys Chem C 118:7730–7739. doi: 10.1021/jp502102a CrossRefGoogle Scholar
  30. Murphy CJ (2002) Peer reviewed: optical sensing with quantum dots. Anal Chem 74:520 A–526 A. doi: 10.1021/ac022124v CrossRefGoogle Scholar
  31. Nguyen T-D, Hamad WY, MacLachlan MJ (2014) CdS quantum dots encapsulated in chiral nematic mesoporous silica: new iridescent and luminescent materials. Adv Funct Mater 24:777–783. doi: 10.1002/adfm.201302521 CrossRefGoogle Scholar
  32. Padalkar S, Capadona JR, Rowan SJ et al (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26:8497–8502. doi: 10.1021/la904439p CrossRefGoogle Scholar
  33. Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025. doi: 10.1021/cm502873c CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Advanced Cellulosic MaterialBerwickCanada
  3. 3.Department of ChemistryMcGill UniversityMontrealCanada

Personalised recommendations