, Volume 24, Issue 2, pp 487–503 | Cite as

Interactions underpinning the plasticization of a polymer matrix: a dynamic and structural analysis of DMP-plasticized cellulose acetate

  • Adrien Benazzouz
  • Emeline DudognonEmail author
  • Natália T. Correia
  • Valérie Molinier
  • Jean-Marie Aubry
  • Marc Descamps
Original Paper


This work establishes that the plasticization effect of a classical petrochemical plasticizer, dimethyl phthalate (DMP), on a polymer matrix, cellulose acetate (CA), is due to the development of intermolecular interactions of dipolar type. Plasticized cellulose acetate films are studied with regard to the interactions between the polymer and plasticizer at the macroscopic scale by thermogravimetric analysis and differential scanning calorimetry. At the molecular level, Fourier transform infrared spectroscopy and dielectric relaxation spectroscopy are used to elucidate the nature of interactions that are responsible for the plasticizing effects. These static and dynamic complementary analyses evidenced that DMP does not establish H-bonding interactions with the polymer chains of cellulose acetate but rather weaker interactions of dipolar type. These dipole–dipole interactions that develop between acetyl side groups of CA and the ester phthalate moieties of DMP increase the overall mobility of CA chains and also locally influence the molecular mobility and the water uptake tendency.


Cellulose acetate Plasticization Dimethyl phthalate Infra-red Dielectric relaxation 



This work was supported by the region Nord-Pas de Calais (CPER 2011-2013).

Supplementary material

10570_2016_1148_MOESM1_ESM.pdf (317 kb)
Online Resource 1H NMR spectra and analysis of CA/DMP (17%w/w) films annealed at 50 °C for 24 h, and DRS spectra of pure DMP recorded between -150 °C and 20 °C. (PDF 316 kb)


  1. Alvarez F, Alegria A, Colmenero J (1991) Relationship between the time-domain Kohlrausch–Williams–Watts and frequency-domain Havriliak–Negami relaxation functions. Phys Rev B 44:7306–7312. doi: 10.1103/PhysRevB.44.7306 CrossRefGoogle Scholar
  2. Angell CA (1995) Formation of glasses from liquids and biopolymers. Science 267:1924–1935. doi: 10.1126/science.267.5206.1924 CrossRefGoogle Scholar
  3. Bao CY, Long DR, Vergelati C (2015) Miscibility and dynamical properties of cellulose acetate/plasticizer systems. Carbohydr Polym 116:95–102. doi: 10.1016/j.carbpol.2014.07.078 CrossRefGoogle Scholar
  4. Driessen WL, Everstijn PLA (1977) Dimethyl phthalate, a neutral bidentate oxygen-donor ligand to divalent metal ions. Z Naturforsch B 32:1284–1286CrossRefGoogle Scholar
  5. Einfeldt J, Kwasniewski A (2002) Characterization of different types of cellulose by dielectric spectroscopy. Cellulose 9:225–238CrossRefGoogle Scholar
  6. Einfeldt J, Meißner D, Kwasniewski A (2000) Comparison of the molecular dynamics of celluloses and related polysaccharides in wet and dried states by means of dielectric spectroscopy. Macromol Chem Phys 201:1969–1975. doi: 10.1002/1521-3935(20001001)201:15<1969:AID-MACP1969>3.0.CO;2-L CrossRefGoogle Scholar
  7. Einfeldt J, Meißner D, Kwasniewski A (2001) Polymerdynamics of cellulose and other polysaccharides in solid state-secondary dielectric relaxation processes. Prog Polym Sci 26:1419–1472. doi: 10.1016/S0079-6700(01)00020-X CrossRefGoogle Scholar
  8. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355. doi: 10.1111/j.1151-2916.1925.tb16731.x CrossRefGoogle Scholar
  9. Guo Y, Wu P (2008) Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy. Carbohydr Polym 74:509–513. doi: 10.1016/j.carbpol.2008.04.005 CrossRefGoogle Scholar
  10. Hassan-Nejad M, Ganster J, Bohn A et al (2009) Bio-based nanocomposites of cellulose acetate and nano-clay with superior mechanical properties. Macromol Symp 280:123–129. doi: 10.1002/masy.200950614 CrossRefGoogle Scholar
  11. Havriliak S, Negami S (1966) A complex plane analysis of α-dispersions in some polymer systems. Polym Sci Part C: Polym Symp 14:99–117. doi: 10.1002/polc.5070140111 CrossRefGoogle Scholar
  12. Heudorf U, Mersch-Sundermann V, Angerer J (2007) Phthalates: toxicology and exposure. Int J Hyg Environ Health 210:623–634. doi: 10.1016/j.ijheh.2007.07.011 CrossRefGoogle Scholar
  13. Johari GP, Goldstein M (1970) Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J Chem Phys 53:2372–2388. doi: 10.1063/1.1674335 CrossRefGoogle Scholar
  14. Johari GP, Goldstein M (1971) Viscous liquids and the glass transition. III. Secondary relaxations in aliphatic alcohols and other nonrigid molecules. J Chem Phys 55:4245–4252. doi: 10.1063/1.1676742 CrossRefGoogle Scholar
  15. Kaminski K, Kaminska E, Ngai KL et al (2009) Identifying the origins of two secondary relaxations in polysaccharides. J Phys Chem B 113:10088–10096. doi: 10.1021/jp809760t CrossRefGoogle Scholar
  16. Kaminski K, Wlodarczyk P, Adrjanowicz K et al (2010) Origin of the commonly observed secondary relaxation process in saccharides. J Phys Chem B 114:11272–11281. doi: 10.1021/jp1034773 CrossRefGoogle Scholar
  17. Keely CM, Zhang X, McBrierty VJ (1995) Hydration and plasticization effects in cellulose acetate: a solid-state NMR study. J Mol Struct 355:33–46. doi: 10.1016/0022-2860(95)08865-S CrossRefGoogle Scholar
  18. Kohlrausch R (1854) Theorie des elektrischen Rückstandes in der Leidener Flasche. Ann Phys 167:56–82. doi: 10.1002/andp.18541670103 CrossRefGoogle Scholar
  19. Kudlik A, Tschirwitz C, Benkhof S et al (1997) Slow secondary relaxation process in supercooled liquids. EPL Europhys Lett 40:649. doi: 10.1209/epl/i1997-00518-y CrossRefGoogle Scholar
  20. McBrierty VJ, Keely CM, Coyle FM et al (1996) Hydration and plasticization effects in cellulose acetate: molecular motion and relaxation. Faraday Discuss 103:255–268. doi: 10.1039/FD9960300255 CrossRefGoogle Scholar
  21. Meier MM, Kanis LA, de Lima JC et al (2004) Poly(caprolactone triol) as plasticizer agent for cellulose acetate films: influence of the preparation procedure and plasticizer content on the physico-chemical properties. Polym Adv Technol 15:593–600. doi: 10.1002/pat.517 CrossRefGoogle Scholar
  22. Murphy D, de Pinho MN (1995) An ATR–FTIR study of water in cellulose acetate membranes prepared by phase inversion. J Membr Sci 106:245–257. doi: 10.1016/0376-7388(95)00089-U CrossRefGoogle Scholar
  23. Ngai KL (2011) Relaxation and diffusion in complex systems. Springer, New YorkCrossRefGoogle Scholar
  24. Ngai KL, Paluch M (2004) Classification of secondary relaxation in glass-formers based on dynamic properties. J Chem Phys 120:857–873. doi: 10.1063/1.1630295 CrossRefGoogle Scholar
  25. Petzold N, Schmidtke B, Kahlau R et al (2013) Evolution of the dynamic susceptibility in molecular glass formers: results from light scattering, dielectric spectroscopy, and NMR. J Chem Phys 138:12A510. doi: 10.1063/1.4770055 CrossRefGoogle Scholar
  26. Shahin Thayyil MS, Capaccioli S, Prevosto D, Ngai KL (2008) Is the Johari–Goldstein β-relaxation universal? Philos Mag 88:4007–4013. doi: 10.1080/14786430802270082 CrossRefGoogle Scholar
  27. Singh S, Li SS-L (2011) Phthalates: toxicogenomics and inferred human diseases. Genomics 97:148–157. doi: 10.1016/j.ygeno.2010.11.008 CrossRefGoogle Scholar
  28. Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, ChichesterGoogle Scholar
  29. Sousa M, Brás AR, Veiga HIM et al (2010) Dynamical characterization of a cellulose acetate polysaccharide. J Phys Chem B 114:10939–10953. doi: 10.1021/jp101665h CrossRefGoogle Scholar
  30. Storey RF, Mauritz KA, Cox BD (1989) Diffusion of various dialkyl phthalate plasticizers in PVC. Macromolecules 22:289–294. doi: 10.1021/ma00191a053 CrossRefGoogle Scholar
  31. Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley, ChichesterCrossRefGoogle Scholar
  32. Tabb DL, Koenig JL (1975) Fourier transform infrared study of plasticized and unplasticized poly(vinyl chloride). Macromolecules 8:929–934. doi: 10.1021/ma60048a043 CrossRefGoogle Scholar
  33. Tamman G, Hesse W (1926) Die Abhängigkeit der Viskosität von der Temperatur bei Unterkühlten Flüssigkeiten. Z Anorg Allg Chem 156:245–257CrossRefGoogle Scholar
  34. Toprak C, Agar JN, Falk M (1979) State of water in cellulose acetate membranes. J Chem Soc Faraday Trans 1: Phys Chem Condens Phases 75:803–815. doi: 10.1039/F19797500803 CrossRefGoogle Scholar
  35. Ubbink J (2016) Structural and thermodynamic aspects of plasticization and antiplasticization in glassy encapsulation and biostabilization matrices. Adv Drug Deliv Rev 100:10–26. doi: 10.1016/j.addr.2015.12.019 CrossRefGoogle Scholar
  36. Vogel H (1921) Das Temperatur Abhängigkeitgesetz der Viskosität von Flüssigkeiten. Phys Z 22:645–646Google Scholar
  37. Wübbenhorst M, van Turnhout J (2002) Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. J Non-Cryst Solids 305:40–49. doi: 10.1016/S0022-3093(02)01086-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Université Lille Nord de France, ENSCL, UCCS (Unité de Catalyse et de Chimie du Solide), UMR CNRS 8181, Equipe CISCO, Cité ScientifiqueVilleneuve d’Ascq CedexFrance
  2. 2.Université Lille Nord de France, UMET (Unité Matériaux et Transformations), UMR CNRS 8207, Cité ScientifiqueVilleneuve d’Ascq CedexFrance

Personalised recommendations