, Volume 24, Issue 2, pp 739–753 | Cite as

Chitosan nanoparticles as a potential drug delivery system attached to viscose cellulose fibers

  • Tijana Ristić
  • Andrej Zabret
  • Lidija Fras Zemljič
  • Zdenka Peršin
Original Paper


Chitosan and its water-soluble N,N,N-trimethyl derivative were attached to cellulose fibers in the form of nanoparticle dispersions. The attachment of the chitosan nanoparticles to the fiber surface was studied by evaluation of the quantity of chitosan amino groups using a conventional spectrophotometric method supported by X-ray photoelectron spectroscopy. The desorption kinetics of the chitosan nanoparticles from the fiber surface was also examined indirectly by the spectrophotometric method. Additionally, a model drug was incorporated into the optimal chitosan nanoparticles for subsequent attachment to fibers to create a potential fibrous drug delivery system aimed at gynecological use, i.e., tampons as antimicrobial agents themselves or as drug reservoirs.


Chitosan Water-soluble N,N,N-trimethyl chitosan derivative Cellulose viscose fibers Adsorption/desorption Drug delivery system 



The research work was produced within the framework of Project No. J2-7413 Multifunctional electrospunned nanofibers’ development and dynamic interaction studies with pathogen bacteria and Research Program P2-0118 TEXTILE CHEMISTRY, supported financially by the Slovenian Research Agency.


  1. Ali SW, Joshi M, Rajendran S (2010) Modulation of size, shape and surface charge of chitosan nanoparticles with reference to antimicrobial activity. Adv Sci Lett 3:452–460. doi: 10.1166/asl.2010.1152 CrossRefGoogle Scholar
  2. Ali SW, Rajendran S, Mangala J (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohyd Polym 83(2):438–446. doi: 10.1016/j.carbpol.2010.08.004 CrossRefGoogle Scholar
  3. Alishahi A, Mirvaghefi A, Tehrani MR, Farahmand H, Shojaosadati SA, Dorkoosh FA, Elsabee Maher Z (2011) Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chem 126(3):935–940. doi: 10.1016/j.foodchem.2010.11.086 CrossRefGoogle Scholar
  4. Barazzouk S, Daneault C (2012) Amino acid and peptide immobilization on oxidized nanocellulose: spectroscopic characterization. Nanomaterials 2:187–205. doi: 10.3390/nano2020187 CrossRefGoogle Scholar
  5. Berrada M, Serreqi A, Dabbarh F, Owusu A, Gupta A, Lenhert S (2005) A novel non-toxic camptothecin formulation for cancer therapy. Biomaterials 26:2115–2120. doi: 10.1016/j.biomaterials.2004.06.013 CrossRefGoogle Scholar
  6. Čakara D, Fras Zemljič L, Bračič M, Stana-Kleinschek K (2009) Protonation behavior of cotton fabric with irreversibly adsorbed chitosan: a potentiometric titration study. Carbohyd Polym 78(1):36–40. doi: 10.1016/j.carbpol.2009.04.011 CrossRefGoogle Scholar
  7. das Neves J, Bahia MF (2006) Gels as vaginal drug delivery systems. Int J Pharm 318:1–14. doi: 10.1016/j.ijpharm.2006.03.012 CrossRefGoogle Scholar
  8. Dobromir M, Biliuta G, Luca D, Aflori M, Harabagiu V, Coseri S (2011) XPS study of the ion-exchange capacity of the native and surface oxidized viscose fibers. Colloid Surf A 381(1–3):106–110. doi: 10.1016/j.colsurfa.2011.03.030 CrossRefGoogle Scholar
  9. Duceppe N, Tabrizian M (2009) Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Biomaterials 30(13):2625–2631. doi: 10.1016/j.biomaterials.2009.01.017 CrossRefGoogle Scholar
  10. El-tahlawy KF, El-bendary MA, Elhendawy AG, Hudson SM (2005) The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohyd Polym 60(4):421–430. doi: 10.1016/j.carbpol.2005.02.019 CrossRefGoogle Scholar
  11. Fras Zemljič L, Strnad S, Šauperl O, Stana-Kleinschek K (2009) Characterization of amino groups for cotton fibers coated with chitosan. Text Res J 79:219–226. doi: 10.1177/0040517508093592 CrossRefGoogle Scholar
  12. Fras Zemljič L, Kokol V, Čakara D (2011a) Antimicrobial and antioxidant properties of chitosan-based viscose fibres enzymatically functionalized with flavonoids. Text Res J 81(15):1532–1540. doi: 10.1177/0040517511404600 CrossRefGoogle Scholar
  13. Fras Zemljič L, Šauperl O, But I, Zabret A, Lusicky M (2011b) Viscose material functionalised by chitosan as a potential treatment in gynaecology. Text Res J 81:1183–1190. doi: 10.1177/0040517510397572 CrossRefGoogle Scholar
  14. Fras Zemljič L, Ristić T, Tkavc T (2012) Adsorption and antibacterial activity of soluble and precipitated chitosan on cellulose viscose fibers. J Eng Fiber Fabr 7(1):50–57Google Scholar
  15. Gavini E, Sanna V, Juliano C, Bonferoni MC, Giunchedi P (2002) Mucoadhesive vaginal tablets as veterinary delivery system for the controlled release of an antimicrobial drug, acriflavine. AAPS PharmSciTech 3(3):1–7. doi: 10.1208/pt030320 CrossRefGoogle Scholar
  16. Harvey D (2000) Spectroscopic methods of analysis in modern analytical chemistry. McGraw-Hill, New YorkGoogle Scholar
  17. Hirnle L, Heimrath J, Woyton J, Klosek A, Hirnle G, Malolepsza-Jarmolowska K (2001) Application of 2% clindamycin cream in the treatment of bacterial vaginosis and valuation of methylcellulose gel containing the complex of Chitosan F and PVP k-90 with lactic acid as carrier for intravaginally adhbited medicines in the cases of pregnancies with the symptoms of preterm delivery. Ginekol Pol 72:1096–1100Google Scholar
  18. Hu J, Xiao ZB, Zhou RJ, Wang MX (2011) Comparison of compounded fragrance and chitosan nanoparticles loaded with fragrance applied in cotton fabrics. Text Res J 81(19):2056–2064. doi: 10.1177/0040517511416274 CrossRefGoogle Scholar
  19. Kale VV, Ubgade A (2013) Vaginal mucosa—a promising site for drug therapy. Br J Pharm Res 3(4):983–1000. doi: 10.9734/BJPR/2013/3895 CrossRefGoogle Scholar
  20. Katas H, Mohamad A, Zin NM (2011) Physicochemical effect of chitosan-tripolyphosphate nanoparticles on antibacterial activity against gram-positive and gram-negative bacteria. J Med Sci 11(4):192–197. doi: 10.3923/jms.2011.192.197 CrossRefGoogle Scholar
  21. King M (2016) Tampon market to achieve value of $2.65 billion by 2017. TransWorldNews. Accessed 19 Apr 2016
  22. Lim SH, Hudson SM (2004) Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohyd Polym 56(2):227–234. doi: 10.1016/j.carbpol.2004.02.005 CrossRefGoogle Scholar
  23. Lu YH, Yu ZC, Yang ZD (2010) Modification of Antheraea pernyi silk with reactive quaternary ammonium salt of chitosan. J Fiber Bioeng Inform 2(4):219–225. doi: 10.3993/jfbi03201003 CrossRefGoogle Scholar
  24. Maghami GG, Roberts GAF (1988) Studies on the adsorption of anionic dyes on chitosan. Macromol Chem Phys 189:2239–2243. doi: 10.1002/macp.1988.021891003 CrossRefGoogle Scholar
  25. Meng J, Sturgis TF, Youan BBC (2011) Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci 44(1-2):57–67. doi: 10.1016/j.ejps.2011.06.007 CrossRefGoogle Scholar
  26. Morris GA, Castile J, Smith A, Adams GG, Harding SE (2011) The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP)—chitosan nanoparticles. Carbohyd Polym 84(4):1430–1434. doi: 10.1016/j.carbpol.2011.01.044 CrossRefGoogle Scholar
  27. Muzzarelli RAA (1998) Colorimetric determination of chitosan. Anal Biochem 260(2):255–257. doi: 10.1006/abio.1998.2705 CrossRefGoogle Scholar
  28. Panwar P, Pandey B, Lakhera PC, Singh KP (2010) Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int J Nanomed 5:101–108Google Scholar
  29. PerkinElmer Inc. The 30-minute guide to ICP-MS—technical note, ICP-Mass Spectrometry PerkinElmer, Inc., Waltham, USA 2004–2011Google Scholar
  30. Quayle AJ (2002) The innate and early immune response to pathogen challenge in the female genital tract and the pivotal role of epithelial cells. J Reprod Immunol 57:61–79CrossRefGoogle Scholar
  31. Raafat D, von Bargen K, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microb 74(12):3764–3773. doi: 10.1128/AEM.00453-08 CrossRefGoogle Scholar
  32. Rabea I, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465. doi: 10.1021/bm034130m CrossRefGoogle Scholar
  33. Ristić T, Fras Zemljič L, Zabret A, Strnad S (2012) Characterization and applications of nanostructured materials and nanotechnology. In: Obradović B (ed) First international conference processing. NanoBelgrade, Tehnološko-metalurški fakultet, Beograd, p 72Google Scholar
  34. Ristić T, Mohan T, Kargl R, Hribernik S, Doliška A, Stana-Kleinschek K, Fras Zemljič L (2014) A study on the interaction of cationized chitosan with cellulose surfaces. Cellulose 21(4):2315–2325. doi: 10.1007/s10570-014-0267-6 CrossRefGoogle Scholar
  35. Ristić T, Hribernik S, Fras Zemljič L (2015) Electrokinetic properties of fibres functionalised by chitosan and chitosan nanoparticles. Cellulose 22(6):3811–3823CrossRefGoogle Scholar
  36. Sayın B, Somavarapu S, Li XW, Sesardic D, Şenel S, Alpar OH (2009) TMC–MCC (N-trimethyl chitosan–mono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccines. Eur J Pharm Sci 38(4):362–369. doi: 10.1016/j.ejps.2009.08.010 CrossRefGoogle Scholar
  37. Songsurang K, Praphairaksit N, Siraleartmukul K, Muangsin N (2011) Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Arch Pharm Res 34(4):583–592. doi: 10.1007/s12272-011-0408-5 CrossRefGoogle Scholar
  38. Strnad S, Šauperl O, Jazbec A, Stana-Kleinschek K (2008) Influence of chemical modification on sorption and mechanical properties of cotton fibers treated with chitosan. Text Res J 78(5):390–398. doi: 10.1177/0040517507085395 CrossRefGoogle Scholar
  39. Tayel AA, Moussa S, El-Tras WF, Knittel D, Opwis K, Schollmeyer E (2010) Anticandidal action of fungal chitosan against Candida albicans. Int J Biol Macromol 47(4):454–457. doi: 10.1016/j.ijbiomac.2010.06.011 CrossRefGoogle Scholar
  40. Valenta C (2005) The use of mucoadhesive polymers in vaginal delivery. Adv Drug Deliv Rev 57:1692–1712. doi: 10.1016/j.addr.2005.07.004 CrossRefGoogle Scholar
  41. Vermani K, Garg S (2000) The scope and potential of vaginal drug delivery. Pharm Sci Technol Today 3(10):359–364CrossRefGoogle Scholar
  42. Wazed SA, Joshi M, Rajendran S (2011) Novel, self assembled antimicrobial textile coating containing chitosan nanoparticles. AATCC Rev 11:49–55Google Scholar
  43. Xu Y, Du Y (2003) Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 250(1):215–226. doi: 10.1016/S0378-5173(02)00548-3 CrossRefGoogle Scholar
  44. Zhang Z, Chen L, Ji J, Huang Y, Chen D (2003) Antibacterial properties of cotton fabrics treated with chitosan. Text Res J 73(12):1103–1106CrossRefGoogle Scholar
  45. Zhao K, Shi X, Zhao Y, Wei H, Sun Q, Huang T, Zhang X, Wang Y (2011) Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles. Vaccine 29(47):8549–8556. doi: 10.1016/j.vaccine.2011.09.029 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Tijana Ristić
    • 1
  • Andrej Zabret
    • 1
  • Lidija Fras Zemljič
    • 2
  • Zdenka Peršin
    • 2
  1. 1.Tosama d.o.o., Production of Medical SuppliesDomžaleSlovenia
  2. 2.Faculty of Mechanical Engineering, Institute for Engineering Materials and DesignUniversity of MariborMariborSlovenia

Personalised recommendations