, Volume 24, Issue 1, pp 119–129 | Cite as

Extraction and characterization of cellulose nanowhiskers from Mandacaru (Cereus jamacaru DC.) spines

  • Neymara C. Nepomuceno
  • Amelia S. F. Santos
  • Juliano E. Oliveira
  • Gregory M. Glenn
  • Eliton S. Medeiros
Original Paper


Cellulose nanowhiskers were extracted from the spines of Mandacaru (Cereus jamacaru DC.), a cactus native to the Caatinga biome of northeastern Brazil, using sulfuric acid hydrolysis preceded by alkaline treatment and bleaching. Results showed that three bleaching steps were required to remove most of the non-cellulosic constituents of the spines that yielded 77.4% cellulose. Nanowhiskers size decreased from about 400 to 260 nm when extraction time varied from 60 to 120 min, this was also evidenced by X-ray diffraction. Alkaline treated and bleached samples had lower thermal stability as compared to untreated spines due to removal of lignin and increased surface area. The amount of time samples were treated with sulfuric acid influenced the thermal stability and consequently the degree of crystallinity of the nanowhiskers. Cellulose nanowhiskers were obtained from Mandacaru spines providing a new renewable source of reinforcement with potential applications in nanocomposites.


Cellulose nanowhiskers Mandacaru spines Thermal characterization Acid hydrolysis 



The authors would like to acknowledge the National Research Council (CNPq) for the scholarship and funding (Grant Numbers: 562763/2010-4, 476362/2012-1 and 400248/2014-0) provided during this research.


  1. Araújo EL, Castro CC, Albuquerque UP (2007) Dynamics of Brazilian Caatinga—a review concerning the plants, environment and people. Funct Ecosyst Communities 1:15–28Google Scholar
  2. August A (2006) The arboreal component of a dry forest in Northeastern Brazil. Braz J Biol 66:479–491. doi: 10.1590/S1519-69842006000300014 CrossRefGoogle Scholar
  3. Baer E, Hiltner A, Morgan RJ (1992) Biological and synthetic hierarchical composites. Phys Today 45(10):60–67CrossRefGoogle Scholar
  4. Chen Y, Liu C, Chang PR et al (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615. doi: 10.1016/j.carbpol.2008.11.030 CrossRefGoogle Scholar
  5. Correa DS, Medeiros ES, Oliveira JE et al (2014) Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications. J Nanosci Nanotechnol 14:6509–6527. doi: 10.1166/jnn.2014.9362 CrossRefGoogle Scholar
  6. Da Silva C, Benaducci D, Frollini E, Polymer T (2011) Lyocell and cotton fibers as reinforcements for a thermoset polymer. BioResources 7:78–98Google Scholar
  7. de Faria-Tavares JS, Martin PG, Mangolin CA et al (2013) Genetic relationships among accessions of Mandacaru (Cereus spp.: Cactaceae) using amplified fragment length polymorphisms (AFLP). Biochem Syst Ecol 48:12–19. doi: 10.1016/j.bse.2012.11.013 CrossRefGoogle Scholar
  8. de Oliveira G, Araújo MB, Rangel TF et al (2012) Conserving the Brazilian semiarid (Caatinga) biome under climate change. Biodivers Conserv 21:2913–2926. doi: 10.1007/s10531-012-0346-7 CrossRefGoogle Scholar
  9. Dias OAT, Negrão DR, Silva RC et al (2016) Studies of lignin as reinforcement for plastics composites. Mol Cryst Liq Cryst 628:72–78. doi: 10.1080/15421406.2015.1137677 CrossRefGoogle Scholar
  10. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. R Soc Chem. doi: 10.1039/c0sm00142b Google Scholar
  11. Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367. doi: 10.1021/ma00122a053 CrossRefGoogle Scholar
  12. Flauzino Neto WP, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue–soy hulls. Ind Crops Prod 42:480–488. doi: 10.1016/j.indcrop.2012.06.041 CrossRefGoogle Scholar
  13. Ioelovich M (2008) Cellulose as a nanostructured polymer: a short review. BioResources 3:1403–1418Google Scholar
  14. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99. doi: 10.1016/j.indcrop.2011.12.016 CrossRefGoogle Scholar
  15. Kargarzadeh H, Ahmad I, Abdullah I et al (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866. doi: 10.1007/s10570-012-9684-6 CrossRefGoogle Scholar
  16. Kassas M (1995) Desertification: a general review. J Arid Environ 30:115–128CrossRefGoogle Scholar
  17. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113. doi: 10.1107/S0021889878012844 CrossRefGoogle Scholar
  18. Li R, Fei J, Cai Y et al (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99. doi: 10.1016/j.carbpol.2008.09.034 CrossRefGoogle Scholar
  19. Lou H, Han W, Wang X (2014) Numerical study on the solution blowing annular jet and its correlation with fiber morphology. Ind Eng Chem Res 53:2830–2838. doi: 10.1021/ie4037142 CrossRefGoogle Scholar
  20. Malainine ME, Dufresne A, Dupeyre D et al (2003) Structure and morphology of cladodes and spines of Opuntia ficus-indica cellulose extraction and characterisation. Carbohydr Polym 51:77–83. doi: 10.1016/S0144-8617(02)00157-1 CrossRefGoogle Scholar
  21. Medeiros ES, Santos ASF, Dufresne A et al (2013) Bionanocomposites. In: Thomas S, Joseph K, Malhotra SK, Goda K, Sreekala MS (eds) Polymer composites. Wiley-VCH Verlag GmbH & Co. KGaA, pp 361–430. doi: 10.1002/9783527674220.ch11
  22. Medeiros ES, Offeman RD, Klamczynski AP et al (2014) Synthesis, characterization and nanocomposite formation of poly(glycerol succinate-co-maleate) with nanocrystalline cellulose. J Polym Environ. doi: 10.1007/s10924-014-0643-1 Google Scholar
  23. Morais JPS, Rosa MDF, De Souza FMDSM et al (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91:229–235. doi: 10.1016/j.carbpol.2012.08.010 CrossRefGoogle Scholar
  24. Morelli CL, Marconcini JM, Pereira FV et al (2012) Extraction and characterization of cellulose nanowhiskers from balsa wood. Macromol Symp 319:191–195. doi: 10.1002/masy.201100158 CrossRefGoogle Scholar
  25. Orts WJ, Shey J, Imam SH et al (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306. doi: 10.1007/s10924-005-5514-3 CrossRefGoogle Scholar
  26. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi: 10.1186/1754-6834-3-10 CrossRefGoogle Scholar
  27. Pasquini D, Teixeira EDM, Curvelo AADS et al (2010) Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind Crops Prod 32:486–490. doi: 10.1016/j.indcrop.2010.06.022 CrossRefGoogle Scholar
  28. Rebman JP, Pinkava DJ (2001) Opuntia cacti of North America: an overview. Fla Entomol 84:474–483. doi: 10.2307/3496374 CrossRefGoogle Scholar
  29. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677. doi: 10.1021/bm034519+ CrossRefGoogle Scholar
  30. Rosa MF, Medeiros ES, Malmonge JA et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92. doi: 10.1016/j.carbpol.2010.01.059 CrossRefGoogle Scholar
  31. Sá MCA, Peixoto RM, Krewer CC, Ameida JRGS, Vargas AC, Costa MM (2011) Antimicrobial activity of caatinga biome ethanolic plant extracts against gram negative and positive bacteria. Rev Bras Ciênc Vet 18:62–66Google Scholar
  32. Santos MVFD, Lira MDA, Junior D, Batista JC et al (2010) Potential of Caatinga forage plants in ruminant feeding. Rev Bras Zootec 39:204–215. doi: 10.1590/S1516-35982010001300023 CrossRefGoogle Scholar
  33. Santos ASF, Pereira-da-silva MA, Oliveira JE et al. (2015) Accelerated sonochemical extraction of cellulose nanowhiskers. J Nanosci Nanotechnol 16(6):6535–6539. doi: 10.1166/jnn.2016.11039 CrossRefGoogle Scholar
  34. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
  35. Sheltami RM, Abdullah I, Ahmad I et al (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88:772–779. doi: 10.1016/j.carbpol.2012.01.062 CrossRefGoogle Scholar
  36. Silva JGM, Silva DS, Ferreira MA, Lima GFC, Melo AAS, Diniz MCNM (2005) Replacement of Sorghum silage (Sorghum bicolor L. Moench) with a Columnar Cactus (Pilosocereus gounellei (A. Weber ex K. Schum.) Byl ex Rowl.) on diets of lactating dairy cows. R Bras Zootec 34(4):1408–1417. doi: 10.1590/S1516-35982005000400039
  37. Silva MJ, Sanches AO, Malmonge LF et al (2012) Conductive nanocomposites based on cellulose nanofibrils coated with polyaniline-DBSA via in situ polymerization. Macromol Symp 319:196–202. doi: 10.1002/masy.201100156 CrossRefGoogle Scholar
  38. Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436. doi: 10.1016/j.indcrop.2012.10.014 CrossRefGoogle Scholar
  39. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432. doi: 10.1021/bm801193d CrossRefGoogle Scholar
  40. Torres LBV, Brito Primo DM, Andrade MGS, Silva SM, Lopes MF (2009) Quality of plated Cereus (Cereus jamacaru D.C.) fruit harvested in different maturity stages. Acta Hortic 811:179–184. doi: 10.17660/ActaHortic.2009.811.22 CrossRefGoogle Scholar
  41. Torres FG, Troncoso OP, Torres C, Grande CJ (2013) Cellulose based blends, composites and nanocomposites. In: Thomas S, Visakh PM, Mathew AP (eds) Advances in natural polymers SE-2. Springer, Berlin, pp 21–54CrossRefGoogle Scholar
  42. Trindade WG, Hoareau W, Megiatto JD et al (2005) Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites. Biomacromolecules 6:2485–2496. doi: 10.1021/bm058006+ CrossRefGoogle Scholar
  43. Vignon MR, Heux L, Malainine ME, Mahrouz M (2004) Arabinan-cellulose composite in Opuntia ficus-indica prickly pear spines. Carbohydr Res 339:123–131. doi: 10.1016/j.carres.2003.09.023 CrossRefGoogle Scholar
  44. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polym (Guildf) 48:3486–3493. doi: 10.1016/j.polymer.2007.03.062 CrossRefGoogle Scholar
  45. Zuluaga R, Putaux JL, Restrepo A et al (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592. doi: 10.1007/s10570-007-9118-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Neymara C. Nepomuceno
    • 1
  • Amelia S. F. Santos
    • 1
  • Juliano E. Oliveira
    • 2
  • Gregory M. Glenn
    • 3
  • Eliton S. Medeiros
    • 1
  1. 1.Materials and Biosystems Laboratory (LAMAB), Department of Materials Engineering (DEMat)Federal University of Paraiba (UFPB)João PessoaBrazil
  2. 2.Department of Materials Engineering (DEMat)Federal University of Lavras (UFLA)LavrasBrazil
  3. 3.Bioproduct Research Unit (BRE), Western Regional Research Center (WRRC), Pacific West Area (PWA)United States Department of Agriculture (USDA)AlbanyUSA

Personalised recommendations