, Volume 24, Issue 1, pp 69–84 | Cite as

Synthesis, characterization and properties of pineapple peel cellulose-g-acrylic acid hydrogel loaded with kaolin and sepia ink

  • Hongjie Dai
  • Huihua Huang
Original Paper


Novel composite hydrogels were synthesized by grafting of acrylic acid onto pineapple peel cellulose and addition of kaolin or sepia ink in ionic liquid 1-butyl-3-methylimidazolium chloride, using potassium persulfate as a free radical initiator and N,N′-methylenebisacrylamide as a crosslinking agent. The structure and morphology of the prepared hydrogels were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscope, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Kaolin and sepia ink improved the thermal stability of the hydrogels. Swelling studies on the prepared hydrogels indicated sepia ink and kaolin affected the swelling ratio and pH-responsive properties. The optimum swelling pH value for the hydrogels was shifted from 7.0 to 12.0 in the presence of sepia ink. The effects of kaolin and sepia ink contents on methylene blue adsorption capacity of the prepared hydrogels were also investigated. The optimum methylene blue adsorption capacity reached 153.85 mg/g at 10% of kaolin and 142.21 mg/g at 20% of sepia ink. The pseudo-second-order kinetic model fit well with the experimental results, indicating the adsorption was chemisorption behavior.


Pineapple peel cellulose Hydrogel Acrylic acid Kaolin Sepia ink Methylene blue 



This work was supported by the National Natural Science Foundation of China under Grant Nos. 31471673 and 31271978 and the Ministry of Education PRC under Grant No. 20120172110017.


  1. Badruddoza A, Hazel GSS, Hidajat K, Uddin MS (2010) Synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nano-adsorbent for removal of methylene blue. Colloid Surf A 367:85–95. doi: 10.1016/j.colsurfa.2010.06.018 CrossRefGoogle Scholar
  2. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82. doi: 10.1016/j.carbpol.2010.10.061 CrossRefGoogle Scholar
  3. Basri SN, Zainuddin N, Hashim K, Yusof NA (2016) Preparation and characterization of irradiated carboxymethyl sago starch-acid hydrogel and its application as metal scavenger in aqueous solution. Carbohydr Polym 138:34–40. doi: 10.1016/j.carbpol.2015.11.028 CrossRefGoogle Scholar
  4. Chang C, He M, Zhou J, Zhang L (2011) Swelling behaviors of pH-and salt-responsive cellulose-based hydrogels. Macromolecules 44:1642–1648. doi: 10.1021/ma102801f CrossRefGoogle Scholar
  5. Chen R, Zhang Y, Shen L, Wang X, Chen J, Ma A, Jiang W (2015) Lead(II) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid. Chem Eng J 268:348–355. doi: 10.1016/j.cej.2015.01.081 CrossRefGoogle Scholar
  6. Cheng Y, Lu J, Liu S, Zhao P, Lu G, Chen J (2014) The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr Polym 107:57–64. doi: 10.1016/j.carbpol.2014.02.034 CrossRefGoogle Scholar
  7. Da Silva DIS, Nogueira GDR, Duzzioni AG, Barrozo MAS (2013) Changes of antioxidant constituents in pineapple (Ananas comosus) residue during drying process. Ind Crop Prod 50:557–562. doi: 10.1016/j.indcrop.2013.08.001 CrossRefGoogle Scholar
  8. Dai HJ, Huang H (2016) Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue. Carbohydr Polym 148:1–10. doi: 10.1016/j.carbpol.2016.04.040 CrossRefGoogle Scholar
  9. Derby CD (2014) Cephalopod ink: production, chemistry, functions and applications. Mar Drugs 12:2700–2730. doi: 10.3390/md12052700 CrossRefGoogle Scholar
  10. Facin BR, Moret B, Baretta D, Belfiore LA, Paulino AT (2015) Immobilization and controlled release of β-galactosidase from chitosan-grafted hydrogels. Food Chem 179:44–51. doi: 10.1016/j.foodchem.2015.01.088 CrossRefGoogle Scholar
  11. Fan L, Luo C, Sun M, Li X, Lu F, Qiu H (2012) Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresour Technol 114:703–706. doi: 10.1016/j.biortech.2012.02.067 CrossRefGoogle Scholar
  12. Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  13. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi: 10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  14. French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588. doi: 10.1007/s10570-012-9833-y CrossRefGoogle Scholar
  15. Fu J, Chen Z, Wang M, Liu S, Zhang J, Zhang J, Han R, Xu Q (2015) Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 259:53–61. doi: 10.1016/j.cej.2014.07.101 CrossRefGoogle Scholar
  16. Gong G, Zhang F, Cheng Z, Zhou L (2015) Facile fabrication of magnetic carboxymethyl starch/poly(vinyl alcohol) composite gel for methylene blue removal. Int J Biol Macromol 81:205–211. doi: 10.1016/j.ijbiomac.2015.07.061 CrossRefGoogle Scholar
  17. Guo X, Chen S, Hu Y, Li G, Liao N, Ye X, Liu D, Xue C (2014) Preparation of water-soluble melanin from squid ink using ultrasound-assisted degradation and its anti-oxidant activity. J Food Sci Technol 51:3680–3690. doi: 10.1007/s13197-013-0937-7 CrossRefGoogle Scholar
  18. Hu X, Hu K, Zeng L, Zhao M, Huang H (2010) Hydrogels prepared from pineapple peel cellulose using ionic liquid and their characterization and primary sodium salicylate release study. Carbohydr Polym 82:62–68. doi: 10.1016/j.carbpol.2010.04.023 CrossRefGoogle Scholar
  19. Hu X, Wang J, Huang H (2013) Impacts of some macromolecules on the characteristics of hydrogels prepared from pineapple peel cellulose using ionic liquid. Cellulose 20:2923–2933. doi: 10.1007/s10570-013-0075-4 CrossRefGoogle Scholar
  20. Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15:11922–11940. doi: 10.3390/ijms150711922 CrossRefGoogle Scholar
  21. Jin X, Liu X, Liu Q, Li Y (2015) Manufacture and performance of ethylamine hydroxyethyl chitosan/cellulose fiber in N-methylmorpholine-N-oxide system. React Funct Polym 91–92:62–70. doi: 10.1016/j.reactfunctpolym.2015.04.008 CrossRefGoogle Scholar
  22. Kim MH, An S, Won K, Kim HJ, Lee SH (2012) Entrapment of enzymes into cellulose–biopolymer composite hydrogel beads using biocompatible ionic liquid. J Mol Catal B Enzym 75:68–72. doi: 10.1016/j.molcatb.2011.11.011 CrossRefGoogle Scholar
  23. Li R, Wang S, Lu A, Zhang L (2015) Dissolution of cellulose from different sources in an NaOH/urea aqueous system at low temperature. Cellulose 22:339–349. doi: 10.1007/s10570-014-0542-6 CrossRefGoogle Scholar
  24. Liu Y, Wang W, Wang A (2010) Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly(acrylic acid)/attapulgite hydrogel composites. Desalination 259:258–264. doi: 10.1016/j.desal.2010.03.039 CrossRefGoogle Scholar
  25. Liu Z, Sun X, Hao M, Huang C, Xue Z, Mu T (2015) Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydr Polym 117:99–105. doi: 10.1016/j.carbpol.2014.09.053 CrossRefGoogle Scholar
  26. Lungu A, Perrin FX, Belec L, Sarbu A, Teodorescu M (2012) Kaolin/poly(acrylic acid) composites as precursors for porous kaolin ceramics. Appl Clay Sci 62:63–69. doi: 10.1016/j.clay.2012.04.008 CrossRefGoogle Scholar
  27. Mai NL, Kim CK, Park B, Park H, Lee SH, Koo Y (2016) Prediction of cellulose dissolution in ionic liquids using molecular descriptors based QSAR model. J Mol Liq 215:541–548. doi: 10.1016/j.molliq.2016.01.040 CrossRefGoogle Scholar
  28. Moniruzzaman M, Ono T, Bustam MA, Yusup S, Uemura Y (2015) Pretreatment of wood biomass with ionic liquids: a “green” approach to separate cellulose for use in oilfield application. J Appl Sci 15:531–537. doi: 10.3923/jas.2015.531.537 CrossRefGoogle Scholar
  29. Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9. doi: 10.1016/j.carbpol.2015.08.035 CrossRefGoogle Scholar
  30. Nor MZM, Ramchandran L, Duke M, Vasiljevic T (2015) Characteristic properties of crude pineapple waste extract for bromelain purification by membrane processing. J Food Sci Technol 52:7103–7112. doi: 10.1007/s13197-015-1812-5 CrossRefGoogle Scholar
  31. Paulino AT, Guilherme MR, Reis AV, Campese GM, Muniz EC, Nozaki J (2006) Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. J Colloid Interface Sci 301:55–62. doi: 10.1016/j.jcis.2006.04.036 CrossRefGoogle Scholar
  32. Peng X, Ren J, Zhong L, Peng F, Sun R (2011) Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents. J Agr Food Chem 59:8208–8215. doi: 10.1021/jf201589y CrossRefGoogle Scholar
  33. Peng S, Meng H, Ouyang Y, Chang J (2014) Nanoporous magnetic cellulose–chitosan composite microspheres: preparation, characterization, and application for Cu(II) adsorption. Ind Eng Chem Res 53:2106–2113. doi: 10.1021/ie402855t CrossRefGoogle Scholar
  34. Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q, Chang C (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64. doi: 10.1016/j.carbpol.2015.10.057 CrossRefGoogle Scholar
  35. Pourjavadi A, Hosseinzadeh H, Sadeghi M (2007) Synthesis, characterization and swelling behavior of gelatin-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. J Compos Mater 41:2057–2069. doi: 10.1177/0021998307074125 CrossRefGoogle Scholar
  36. Pourjavadi A, Ayyari M, Amini-Fazl MS (2008) Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur Polym J 44:1209–1216. doi: 10.1016/j.eurpolymj.2008.01.032 CrossRefGoogle Scholar
  37. Pradhan AK, Rana PK, Sahoo PK (2015) Biodegradability and swelling capacity of kaolin based chitosan-g-PHEMA nanocomposite hydrogel. Int J Biol Macromol 74:620–626. doi: 10.1016/j.ijbiomac.2014.12.024 CrossRefGoogle Scholar
  38. Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly(acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. J Polym Res 21:1–15. doi: 10.1007/s10965-013-0344-9 CrossRefGoogle Scholar
  39. Salisu A, Sanagi MM, Karim KJA, Pourmand N, Ibrahim WAW (2015) Adsorption of methylene blue on alginate-grafted-poly(methyl methacrylate). Jurnal Teknologi 76:19–25Google Scholar
  40. Schott H (1992) Swelling kinetics of polymers. J Macromol Sci B 31:1–9. doi: 10.1080/00222349208215453 CrossRefGoogle Scholar
  41. Senna AM, Novack KM, Botaro VR (2014) Synthesis and characterization of hydrogels from cellulose acetate by esterification crosslinking with EDTA dianhydride. Carbohydr Polym 114:260–268. doi: 10.1016/j.carbpol.2014.08.017 CrossRefGoogle Scholar
  42. Shi Y, Xue Z, Wang X, Wang L, Wang A (2013) Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic acid)/montmorillonite three-dimensional cross-linked polymeric network hydrogels. Polym Bull 70:1163–1179. doi: 10.1007/s00289-012-0898-4 CrossRefGoogle Scholar
  43. Shirsath SR, Patil AP, Patil R, Naik JB, Gogate PR, Sonawane SH (2013) Removal of brilliant green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: a comparative study. Ultrason Sonochem 20:914–923. doi: 10.1016/j.ultsonch.2012.11.010 CrossRefGoogle Scholar
  44. Su Y, Liu J, Yue Q, Li Q, Gao B (2015) Adsorption of lead and nickel ions by semi-interpenetrating network hydrogel based on wheat straw cellulose: kinetics, equilibrium, and thermodynamics. Soft Mater 13:225–236. doi: 10.1080/1539445X.2015.1074923 CrossRefGoogle Scholar
  45. Wan J, Guo J, Miao Z, Guo X (2016) Reverse micellar extraction of bromelain from pineapple peel—effect of surfactant structure. Food Chem 197:450–456. doi: 10.1016/j.foodchem.2015.10.145 CrossRefGoogle Scholar
  46. Wang J, Wei L, Ma Y, Li K, Li M, Yu Y, Wang L, Qiu H (2013a) Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for Cu(II) adsorption. Carbohydr Polym 98:736–743. doi: 10.1016/j.carbpol.2013.06.001 CrossRefGoogle Scholar
  47. Wang J, Zhou X, Xiao H (2013b) Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr Polym 94:749–754. doi: 10.1016/j.carbpol.2013.01.036 CrossRefGoogle Scholar
  48. Xiong R, Wang Y, Zhang X, Lu C (2014) Facile synthesis of magnetic nanocomposites of cellulose@ ultrasmall iron oxide nanoparticles for water treatment. RSC Adv 4:22632–22641. doi: 10.1039/C4RA01397B CrossRefGoogle Scholar
  49. Yadav M, Rhee KY, Jung IH, Park SJ (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20:687–698. doi: 10.1007/s10570-012-9855-5 CrossRefGoogle Scholar
  50. Yan H, Zhang W, Kan X, Dong L, Jiang Z, Li H, Yang H, Cheng R (2011) Sorption of methylene blue by carboxymethyl cellulose and reuse process in a secondary sorption. Colloid Surf A 380:143–151. doi: 10.1016/j.colsurfa.2011.02.045 CrossRefGoogle Scholar
  51. Yusup EM, Mahzan S, Jafferi N, Been CW (2015) The effectiveness of TBAF/DMSO in dissolving oil palm empty fruit bunch-cellulose phosphate. J Med Bioeng 4:165–169Google Scholar
  52. Zhang YD, Xia XZ (2012) Physicochemical Characteristics of pineapple (Ananas mill.) peel cellulose prepared by different methods. Adv Mater Res 554–556:1038–1041. doi: 10.4028/ CrossRefGoogle Scholar
  53. Zhang C, Liu R, Xiang J, Kang H, Liu Z, Huang Y (2014a) Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem 118:9507–9514. doi: 10.1021/jp506013c CrossRefGoogle Scholar
  54. Zhang M, Cheng Z, Zhao T, Liu M, Hu M, Li J (2014b) Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly(acrylic acid) superabsorbent hydrogel. J Agric Food Chem 62:8867–8874. doi: 10.1021/jf5021279 CrossRefGoogle Scholar
  55. Zhang W, Sha Z, Huang Y, Bai Y, Xi N, Zhang Y (2015) Glow discharge electrolysis plasma induced synthesis of cellulose-based ionic hydrogels and their multiple response behaviors. RSC Adv 5:6505–6511. doi: 10.1039/C4RA11222A CrossRefGoogle Scholar
  56. Zhao D, Zhao L, Zhu C, Huang W, Hu J (2009) Water-insoluble β-cyclodextrin polymer crosslinked by citric acid: synthesis and adsorption properties toward phenol and methylene blue. J Incl Phenom Macro 63:195–201. doi: 10.1007/s10847-008-9507-4 CrossRefGoogle Scholar
  57. Zhou Y, Fu S, Zhang L, Zhan H (2013) Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM). Carbohydr Polym 97:429–435. doi: 10.1016/j.carbpol.2013.04.088 CrossRefGoogle Scholar
  58. Zhu L, Zhang L, Tang Y, Kou X (2014) Synthesis of sodium alginate graft poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)/attapulgite hydrogel composite and the study of its adsorption. Polym Plast Technol 53:74–79. doi: 10.1080/03602559.2013.843691 CrossRefGoogle Scholar
  59. Zhuang Y, Yu F, Chen J, Ma J (2016) Batch and column adsorption of methylene blue by graphene/alginate nanocomposite: comparison of single-network and double-network hydrogels. J Environ Chem Eng 4:147–156. doi: 10.1016/j.jece.2015.11.014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Guangzhou CityChina

Personalised recommendations