, Volume 24, Issue 1, pp 107–118 | Cite as

Chemically extracted nanocellulose from sisal fibres by a simple and industrially relevant process

  • J. Trifol
  • C. Sillard
  • D. Plackett
  • P. Szabo
  • J. Bras
  • A. E. Daugaard
Original Paper


A novel type of acetylated cellulose nanofibre (CNF) was extracted successfully from sisal fibres using chemical methods. Initially, a strong alkali treatment was used to swell the fibres, followed by a bleaching step to remove the residual lignin and finally an acetylation step to reduce the impact of the intermolecular hydrogen bonds in the nanocellulose. The result of this sequence of up-scalable chemical treatments was a pulp consisting mainly of micro-sized fibres, which allowed simpler handling through filtration and purification steps and permitted the isolation of an intermediate product with a high solids content. An aqueous dispersion of CNF could be obtained directly from this intermediate pulp by simple magnetic stirring. As a proof of concept, the dispersion was used directly for preparing a highly translucent CNF film, illustrating that there are no large aggregates in the prepared CNF dispersion. Finally, CNF films with alkali extracts were also prepared, resulting in flatter films with an increased mass yield and improved mechanical strength.


Sisal fibres Cellulose nanofibres (CNFs) Cellulose films Acetylation Nanofibers 



The author would like to acknowledge the FP7 - People - 2011, ITN Marie Curie International Training Network (ITN), COST Action FP1003 and COST Action FP1105 for financial support. Lars Schulte is acknowledged for his assistance with the microscopy analyses, Richard Andersson for carrying out the transmission electron microscopy and Sebastien Raynaud for assisting with measuring the optical properties of the composites with the Hazemeter.

Supplementary material

10570_2016_1097_MOESM1_ESM.docx (26.1 mb)
Supplementary material 1 (DOCX 26774 kb)


  1. Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665. doi: 10.1016/j.carbpol.2013.08.069 CrossRefGoogle Scholar
  2. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574. doi: 10.1007/s10570-009-9393-y CrossRefGoogle Scholar
  3. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. doi: 10.1021/bm0493685 CrossRefGoogle Scholar
  4. Baker E, Keisler JM (2011) Cellulosic biofuels: expert views on prospects for advancement. Energy 36:595–605. doi: 10.1016/j.energy.2010.09.058 CrossRefGoogle Scholar
  5. Belbekhouche S, Bras J, Siqueira G, Chappey C, Lebrun L, Khelifi B, Marais S, Dufresne A (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 83:1740–1748. doi: 10.1016/j.carbpol.2010.10.036 CrossRefGoogle Scholar
  6. Bismarck A, Aranberri-Askargorta I, Springer J, Mohanty AK, Misra M, Hinrichsen G, Czapla S (2001) Surface characterization of natural fibers; surface properties and the water up-take behavior of modified sisal and coir fibers. Green Chem 3:100–107. doi: 10.1039/b100365h CrossRefGoogle Scholar
  7. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53. doi: 10.1016/j.carbpol.2010.12.023 CrossRefGoogle Scholar
  8. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12. doi: 10.1021/bm060620d CrossRefGoogle Scholar
  9. de Morais TE, Corrêa AC, Manzoli A, de Lima LF, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606. doi: 10.1007/s10570-010-9403-0 CrossRefGoogle Scholar
  10. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2009) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi: 10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  11. Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645. doi: 10.1016/j.polymer.2006.09.004 CrossRefGoogle Scholar
  12. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441. doi: 10.1016/j.eurpolymj.2007.05.038 CrossRefGoogle Scholar
  13. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585. doi: 10.1021/bm800038n CrossRefGoogle Scholar
  14. Herrick FW, Casebier RL, Hamilton KJ, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813Google Scholar
  15. Kim D, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–368CrossRefGoogle Scholar
  16. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose: its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi: 10.1016/j.carbpol.2012.05.026 CrossRefGoogle Scholar
  17. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. doi: 10.1016/j.eurpolymj.2014.07.025 CrossRefGoogle Scholar
  18. Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindström T, Siró I, Plackett D (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Memb Sci 358:67–75. doi: 10.1016/j.memsci.2010.04.030 CrossRefGoogle Scholar
  19. Mondragon G, Fernandes S, Retegi A, Peña C, Algar I, Eceiza A, Arbelaiz A (2014) A common strategy to extracting cellulose nanoentities from different plants. Ind Crops Prod 55:140–148. doi: 10.1016/j.indcrop.2014.02.014 CrossRefGoogle Scholar
  20. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi: 10.1039/c0cs00108b CrossRefGoogle Scholar
  21. Mwaikambo LY, Ansell MP (1999) The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angew Makromol Chem 272:108–116. doi: 10.1002/(SICI)1522-9505(19991201)272:1<108:AID-APMC108>3.0.CO;2-9 CrossRefGoogle Scholar
  22. Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234. doi: 10.1016/j.carbpol.2013.04.086 CrossRefGoogle Scholar
  23. Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2010) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134. doi: 10.1007/s10570-010-9474-y CrossRefGoogle Scholar
  24. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18:351–363. doi: 10.1002/(SICI)1098-2329(199924)18:4<351:AID-ADV6>3.0.CO;2-X CrossRefGoogle Scholar
  25. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691. doi: 10.1021/bm060154s CrossRefGoogle Scholar
  26. Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411. doi: 10.1021/la9028595 CrossRefGoogle Scholar
  27. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi: 10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  28. Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119:2652–2660. doi: 10.1002/app.32831 CrossRefGoogle Scholar
  29. Tejado A, Alam MN, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19:831–842. doi: 10.1007/s10570-012-9694-4 CrossRefGoogle Scholar
  30. Trifol J, Plackett D, Sillard C, Hassager O, Daugaard AE, Bras J, Szabo P (2016a) A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites. J Appl Polym Sci 133:43257. doi: 10.1002/app.43257 CrossRefGoogle Scholar
  31. Trifol J, Plackett D, Sillard C, Szabo P, Bras J, Daugaard AE (2016b) Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance. Polym Int 65:988–995. doi: 10.1002/pi.5154 CrossRefGoogle Scholar
  32. Wu C-N, Saito T, Yang Q, Fukuzumi H, Isogai A (2014) Increase in the water contact angle of composite film surfaces caused by the assembly of hydrophilic nanocellulose fibrils and nanoclay platelets. ACS Appl Mater Interfaces 6:12707–12712. doi: 10.1021/am502701e CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • J. Trifol
    • 1
  • C. Sillard
    • 2
  • D. Plackett
    • 3
  • P. Szabo
    • 1
  • J. Bras
    • 2
  • A. E. Daugaard
    • 1
  1. 1.Danish Polymer Centre, Department of Chemical and Biochemical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.LGP2/Grenoble INP-Pagora/CNRS, 461 rue de la papeterieDomaine Universitaire, C10065Saint Martin d’Hères CedexFrance
  3. 3.Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations