Advertisement

Cellulose

, Volume 23, Issue 6, pp 3639–3651 | Cite as

Preparation by combined enzymatic and mechanical treatment and characterization of nanofibrillated cotton fibers

  • Akihiro Hideno
  • Kentaro Abe
  • Hiromi Uchimura
  • Hiroyuki Yano
Original Paper

Abstract

The effects of cellulases and their combination with mechanical fibrillation for nanofibrillation of cotton boll and dried cotton fibers and their subsequent application were investigated. The prepared nanofibrillated fibers were analyzed and compared in terms of morphology and solid-state properties. It was found that Trichoderma reesei cellulase, mainly consisting of cellobiohydrolases, was relatively suitable for nanofibrillation of cotton boll fibers. Nanofibrillation of cotton fibers, especially when previously dried, proved difficult without cellulases. Our results suggest that dried cotton fibers have strong hydrogen bonds, as in “hornification” during drying of wood pulp. However, we could nanofibrillate not only never-dried fibers of cotton boll but also dried cotton to 10–50 nm in width by treatment with cellulase mainly consisting of cellobiohydrolase, although a few bundles of around 100 nm remained. These results indicate that cellulase treatment cut and swelled the dried cotton fibers by breaking the strong hydrogen bonds, enabling their nanofibrillation. Nanofibrillated cotton fibers prepared using cellulases also contained relatively pure cellulose with greater crystallinity and higher thermal degradation temperatures compared with other cellulose nanofibers. Considering these characteristics, such cotton fibers nanofibrillated using cellulase would be applicable in medical and composite industries.

Keywords

Cotton boll Dried cotton Cellulases Nanofibrillation Hornification 

Notes

Acknowledgments

This work was supported by the Foundation of Industrial Development of Ehime Prefecture, Japan, and by JSPS KAKENHI grants no. JP26850222 and JP16K07809 in Japan. The authors thank Mr. Fumihide Nishisaka [Saisaikiteya of the National Federation of Agricultural Cooperative Associations (JA)] and Dr. Sunao Morimoto (Marusan Industry Co., Ltd., Japan) for kindly supplying the cotton boll and dried cotton fibers, respectively.

References

  1. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023. doi: 10.1007/s10570-009-9334-9 CrossRefGoogle Scholar
  2. Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85:733–737. doi: 10.1016/j.carbpol.2011.03.028 CrossRefGoogle Scholar
  3. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278. doi: 10.1021/bm700624p CrossRefGoogle Scholar
  4. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180. doi: 10.1007/s10570-006-9061-4 CrossRefGoogle Scholar
  5. Chen W, Abe K, Uetani K, Yu H, Liu Y, Yano H (2014) Individual cotton cellulose nanofibers: pretreatment and fibrillation technique. Cellulose 21:1517–1528. doi: 10.1007/s10570-014-0172-z CrossRefGoogle Scholar
  6. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi: 10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  7. French AD, Santiago Cintrón S (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588. doi: 10.1007/s10570-012-9833-y CrossRefGoogle Scholar
  8. Garcia O, Torres AL, Colom JF, Pastor FIJ, Vidal T (2002) Effect of cellulase-assisted refining on the properties of dried and never-dried eucalyptus pulp. Cellulose 9(2):115–125. doi: 10.1023/A:1020191622764 CrossRefGoogle Scholar
  9. Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose Ib crystalline domains. Carbohydr Polym 61:191–197. doi: 10.1016/j.carbpol.2005.04.018 CrossRefGoogle Scholar
  10. Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441. doi: 10.1016/j.eurpolymj.2007.05.038 CrossRefGoogle Scholar
  11. Hideno A (2016) Comparison of the thermal degradation properties of crystalline and amorphous cellulose, as well as treated lignocellulosic biomass. BioResouces 11(3):6309–6319. doi: 10.15376/biores.11.3.6309-6319 Google Scholar
  12. Hideno A, Abe K, Yano H (2014) Preparation using pectinase and characterization of nanofibers from orange peel waste in juice factories. J Food Sci 79:N1218–N1224. doi: 10.1111/1750-3841.12471 CrossRefGoogle Scholar
  13. Hon DNS (1994) Cellulose: a random walk along its historical path. Cellulose 1:1–25. doi: 10.1007/BF00818796 CrossRefGoogle Scholar
  14. Ibarra D, Kopcke V, Ek M (2010) Behavior of different monocomponent endoglucanases on the accessibility and reactivity of dissolving-grade pulps for viscose process. Enzyme Microbial Technol 47:355–362. doi: 10.1016/j.enzmictec.2010.07.016 CrossRefGoogle Scholar
  15. Ifuku S, Adachi M, Morimoto M, Saimoto H (2011) Fabrication of cellulose nanofibers from parenchyma cells of pears and apples. Sen’i Gakkaishi 67:34–38. doi: 10.2115/fiber.67.86 CrossRefGoogle Scholar
  16. Igarashi K, Uchinashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttila M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282. doi: 10.1126/science.1208386 CrossRefGoogle Scholar
  17. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. doi: 10.1039/C0NR00583E CrossRefGoogle Scholar
  18. Kato KL, Cameron RE (1999) A review of the relationship between thermally-accelerated ageing of paper and hornification. Cellulose 6:23–40. doi: 10.1023/A:1009292120151 CrossRefGoogle Scholar
  19. Kekalainen K, Liimatainen H, Illikainen M, Maloney TC, Niinimaki J (2014) The role of hornification in the disintegration behaviour of TEMPO-oxidized bleached hardwood fibers in a high-shear homogenizer. Cellulose 21:1163–1174. doi: 10.1007/s10570-014-0210-x CrossRefGoogle Scholar
  20. Kohnke T, Lund K, Brelid H, Westman G (2010) Kraft pulp hornification: a closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydr Polym 81:226–233. doi: 10.1016/j.carbpol.2010.02.023 CrossRefGoogle Scholar
  21. Lagerwall JPF, Schutz C, Salajkova M, Noh JH, Park JH, Scalia G, Bergstom L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(e80):1–12. doi: 10.1038/am.2013.69 Google Scholar
  22. Niimura H, Yokoyama T, Kimura S, Matsumoto Y, Kuga S (2010) AFM observation of ultrathin microfibrils in fruit tissues. Cellulose 17:13–18. doi: 10.1007/s10570-009-9361-6 CrossRefGoogle Scholar
  23. Nyon MP, Prentice T, Day J, Kirkpatrick J, Sivalingam GN, Levy G, Haq I, Irving JA, Lomas DA, Christodoulou J, Gooptu B, Thalassinos K (2015) An integrative approach combining ion mobility mass spectrometry, X-ray crystallography, and nuclear magnetic resonance spectroscopy to study the conformational dynamics of a1-antitrypsin upon ligand binding. Protein Sci 24:1301–1312. doi: 10.1002/pro.2706 CrossRefGoogle Scholar
  24. Pääkko M, Ankerfors M, Kosonen H, Ahola ANS, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi: 10.1021/bm061215p CrossRefGoogle Scholar
  25. Rabinovich ML, Melnick MS, Bolobova AV (2002) The structure and mechanism of action of cellulolytic enzymes. Biochemistry 67(8):850–871. doi: 10.1023/A:1019958419032 Google Scholar
  26. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691. doi: 10.1021/bm060154s CrossRefGoogle Scholar
  27. Sandgren M, Shaw A, Ropp TH, Wu S, Bott R, Cameron AD, Stahlberg J, Mitchinson C, Jones A (2001) The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9A resolution. J Mol Biol 308:295–310. doi: 10.1006/jmbi.2001.4583 CrossRefGoogle Scholar
  28. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi: 10.1177/004051755902901003 CrossRefGoogle Scholar
  29. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi: 10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  30. Tsuboi K, Yokota S, Kondo T (2014) Difference between bamboo- and wood-derived cellulose nanofibers prepared by the aqueous counter collision method. Nord Pulp Paper Res J 29:69–76. doi: 10.3183/NPPRJ-2014-29-01-p069-076 CrossRefGoogle Scholar
  31. Uetani K, Watanabe Y, Abe K, Yano H (2014) Influence of drying method and precipitated salts on pyrolysis for nanocelluloses. Cellulose 21:1631–1639. doi: 10.1007/s10570-014-0242-2 CrossRefGoogle Scholar
  32. Yano H (2010) Production of cellulose nanofibers and their application. J Jpn Inst Energy 89:1134–1140 (in Japanese) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Akihiro Hideno
    • 1
  • Kentaro Abe
    • 2
  • Hiromi Uchimura
    • 1
  • Hiroyuki Yano
    • 2
  1. 1.Paper Industry Innovation CenterEhime UniversityEhimeJapan
  2. 2.Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan

Personalised recommendations