, Volume 23, Issue 6, pp 3569–3576 | Cite as

One-pot functionalization of cellulose nanocrystals with various cationic groups

  • Latifah Jasmani
  • Samuel EyleyEmail author
  • Christina Schütz
  • Hans Van Gorp
  • Steven De Feyter
  • Wim ThielemansEmail author
Original Paper


After successful cationization of cellulose nanocrystals (CNCs) to produce pyridinium-grafted-CNCs, a variety of different cationic CNCs were prepared using a similar procedure, thus unlocking access to a wide variety of cationized cellulose nanocrystals through a simple one-pot reaction. In this study, cationic CNCs were prepared through the use of 4-(1-bromoethyl)benzoic acid or 4-bromomethylbenzoic acid, p-toluenesulfonyl chloride, CNCs, and two different amines, 1-methylimidazole and 4-dimethylaminopyridine. The amines acted as both the base catalyst for the esterification and the nucleophile to form the cationic charge. This method offers a versatile and straightforward route to prepare a variety of different cationic nanocrystals and therefore tailor their interaction with their environment.


Cellulose nanocrystals Cationization Surface modification One-pot reaction 



LJ would like to thank the Malaysian government for a Ministry of Science, Technology and Innovation Fellowship (mosti/bmi/taji-3/2 jilid). WT, SE and CS thank Research Foundation—Flanders (FWO) for funding under the Odysseus Grant (G.0C60.13N). WT also thanks KU Leuven (Grant OT/14/072), the Engineering and Science Physical Sciences Research Council (ESPRC, Grant EP/J015687/1) and the Province of West-Vlaanderen (Provincial Chair in Advanced Materials) for financial support. HVG and SDF acknowledge support by KU Leuven internal funds.

Supplementary material

10570_2016_1052_MOESM1_ESM.pdf (463 kb)
Supplementary material 1 (pdf 463 KB)


  1. Beamson G, Briggs D (eds) (2000) XPS of polymers database. SurfaceSpectra, ManchesterGoogle Scholar
  2. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054CrossRefGoogle Scholar
  3. Caporali S, Bardi U, Lavacchi A (2006) X-ray photoelectron spectroscopy and low energy ion scattering studies on 1-buthyl-3-methyl-imidazolium bis(trifluoromethane) sulfonimide. J Electron Spectrosc Relat Phenom 151:4–8CrossRefGoogle Scholar
  4. de la Motte H, Hasani M, Brelid H, Westman G (2011) Molecular characterization of hydrolyzed cationized nanocrystalline cellulose, cotton cellulose and softwood kraft pulp using high resolution 1D and 2D NMR. Carbohydr Polym 85:738–746CrossRefGoogle Scholar
  5. Dufresne A (2012) Nanocellulose, from nature to high performance tailored materials. De Gruyter, BerlinCrossRefGoogle Scholar
  6. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  7. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65CrossRefGoogle Scholar
  8. Eyley S, Thielemans W (2011) Imidazolium grafted cellulose nanocrystals for ion exchange applications. Chem Commun 47:4177–4179CrossRefGoogle Scholar
  9. Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651CrossRefGoogle Scholar
  10. Habibi Y, Chanzy H, Vignon MR (2006) Tempo-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687CrossRefGoogle Scholar
  11. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  12. Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244CrossRefGoogle Scholar
  13. Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212CrossRefGoogle Scholar
  14. Jasmani L, Eyley S, Wallbridge R, Thielemans W (2013) A facile one-pot route to cationic cellulose nanocrystals. Nanoscale 5:10,207–10,211CrossRefGoogle Scholar
  15. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) New materials from nature. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  16. Kolbeck C, Cremer T, Lovelock KRJ, Paape N, Schulz PS, Wasserscheid P, Maier F, Steinrück HP (2009) Influence of different anions on the surface composition of ionic liquids studied using arxps. J Phys Chem B 113:8682–8688CrossRefGoogle Scholar
  17. Labet M, Thielemans W (2011) Improving the reproducibility of chemical reactions on the surface of cotton nanocrystals: rop of caprolactone as a case study. Cellulose 18:607–617CrossRefGoogle Scholar
  18. Lovelock KRJ, Villar-Garcia IJ, Maier F, Steinrück HP, Licence P (2010) Photoelectron spectroscopy of ionic liquid-based interfaces. Chem Rev 110:5158–5190CrossRefGoogle Scholar
  19. Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from tempo-mediated oxidation. Macromolecules 38:1665–1671CrossRefGoogle Scholar
  20. Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization. Langmuir 25:8280–8286CrossRefGoogle Scholar
  21. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I\(\beta\) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  22. Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 9:2259–2264CrossRefGoogle Scholar
  23. Song Y, Zhou J, Li Q, Guo Y, Zhang L (2009) Preparation and characterization of novel quaternized cellulose nanoparticles as protein carriers. Macromol Biosci 9:857–863CrossRefGoogle Scholar
  24. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576CrossRefGoogle Scholar
  25. Vandamme D, Eyley S, Van den Mooter G, Muylaert K, Thielemans W (2015) Highly charged cellulose-based nanocrystals as flocculants for harvesting chlorella vulgaris. Bioresour Technol. doi: 10.1016/j.biortech.2015.07.039
  26. Yuan H, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7:696–700CrossRefGoogle Scholar
  27. Zaman M, Xiao H, Chibante F, Ni Y (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89:163–170CrossRefGoogle Scholar
  28. Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Österberg M, Laine J (2010) Poly(n-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11:2683–2691CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of ChemistryUniversity of NottinghamNottinghamUK
  2. 2.Renewable Materials and Nanotechnology Research GroupKU Leuven Campus Kulak KortrijkKortrijkBelgium
  3. 3.Molecular Imaging and PhotonicsKU LeuvenLeuvenBelgium

Personalised recommendations