Advertisement

Cellulose

, Volume 23, Issue 6, pp 3393–3398 | Cite as

High velocity dry spinning of nanofibrillated cellulose (CNF) filaments on an adhesion controlled surface with low friction

  • Yingfeng Shen
  • Hannes OrelmaEmail author
  • Asko Sneck
  • Kirsi Kataja
  • Juha Salmela
  • Pia Qvintus
  • Anna Suurnäkki
  • Ali Harlin
Communication

Abstract

A new process for preparing thin cellulose nanofibril (CNF) filaments (thickness of 16 µm) was investigated by utilizing the dry spinning approach. In the process, CNF hydrogel was extruded through a fine nozzle onto an adhesion controlled capstan (drum) with low friction (slippery surface) at a speed of up to 11 m/s. The utilized capstan enables excellent line speed control when the slippery surface is applied, and prevents drying shrinkage of the spun filaments. The mechanical properties of prepared filaments can be optimized with the stretch ratio, the ratio of the speed of the drum surface, and the CNF jet flow. The developed method allows for manufacturing thin CNF filaments with an elevated spinning rate in a more controlled manner.

Keywords

CNF Filament Spinning Dry-spinning SEM Tensile strength 

Notes

Acknowledgments

The work started as part of the Design Driven Value Chains in the World of Cellulose project (DWOC) funded by Tekes the Finnish Funding Agency for Innovation and continued through VTT’s internal project funded with the aid of a government grant. The authors appreciate the help from Panu Lahtinen and Minna Hakalahti for providing the nanocellulose samples, as well as for valuable discussions with Jari Vartiainen and Heikki Pajari about slippery surfaces.

Supplementary material

10570_2016_1044_MOESM1_ESM.docx (444 kb)
Supplementary material 1 (DOCX 444 kb)

References

  1. Cook JG (1984) Handbook of textile fibres: man-made fibres. Elsevier, AmsterdamCrossRefGoogle Scholar
  2. Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  3. Håkansson KMO, Fall AB, Lundell F et al (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5:4018. doi: 10.1038/ncomms5018 CrossRefGoogle Scholar
  4. Hooshmand S, Aitomäki Y, Norberg N et al (2015) Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl Mater Interfaces 7:13022–13028. doi: 10.1021/acsami.5b03091 CrossRefGoogle Scholar
  5. Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164CrossRefGoogle Scholar
  6. Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12:831–836. doi: 10.1021/bm101510r CrossRefGoogle Scholar
  7. Klemm D (1998) Comprehensive cellulose chemistry. Fundamentals and analytical methods, vol 1. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  8. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRefGoogle Scholar
  9. Paakko M, Vapaavuori J, Silvennoinen R et al (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499. doi: 10.1039/B810371B CrossRefGoogle Scholar
  10. Lafuma A, Quéré D (2011) Slippery pre-suffused surfaces. Europhys Lett 96:56001CrossRefGoogle Scholar
  11. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRefGoogle Scholar
  12. Tammelin T, Hippi U, Salminen, A (2013) Method for the preparation of nanofibrillated cellulose (NFC) films on supports. PCR Int Appl WO2013060934A2Google Scholar
  13. Turbak A, Snyder F, Sandberg K (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827Google Scholar
  14. Walther A, Timonen JVI, Díez I et al (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924–2928. doi: 10.1002/adma.201100580 CrossRefGoogle Scholar
  15. Wong T-S, Kang SH, Tang SKY et al (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yingfeng Shen
    • 1
  • Hannes Orelma
    • 1
    Email author
  • Asko Sneck
    • 1
  • Kirsi Kataja
    • 1
  • Juha Salmela
    • 1
    • 2
  • Pia Qvintus
    • 1
  • Anna Suurnäkki
    • 1
  • Ali Harlin
    • 1
  1. 1.VTT, Technical Research Centre of FinlandEspooFinland
  2. 2.Spinnova LtdVaajakoskiFinland

Personalised recommendations