Advertisement

Cellulose

, Volume 23, Issue 5, pp 3221–3238 | Cite as

Softwood-based sponge gels

  • Suvi Alakalhunmaa
  • Kirsti Parikka
  • Paavo A. Penttilä
  • M. Teresa Cuberes
  • Stefan Willför
  • Lennart Salmén
  • Kirsi S. MikkonenEmail author
Original Paper

Abstract

Crosslinking-aided gelation was utilized to prepare hydrogels from softwood polysaccharides, with spruce galactoglucomannans (GGM)—a group of largely unexploited hemicelluloses—as the main component, aiming at conversion into sponge-like aerogels. Cellulose nanofibrils were used for the formation of a reinforcing network, which was further crosslinked together with a GGM matrix by ammonium zirconium carbonate, an inorganic salt that is regarded as safe for use in food packaging. The hydrogels were freeze-dried into stiff, low-density aerogels with 98 % of their volume composed of air-filled pores. When immersed in water, the aerogels absorbed water up to 37 times their initial weight, demonstrating elasticity and repeatable and reversible sponge capacity. The developed concept reassembles the wood polysaccharides in a new way, creating interesting possibilities for utilizing the abundant “green gold,” GGM. The obtained biobased materials could find application potential, for example, in the field of food packaging and could contribute in the reduction of the usage of petroleum-based plastics in the future.

Keywords

Aerogel Hydrogel Galactoglucomannan Ammonium zirconium carbonate Chemical crosslinking 

Notes

Acknowledgments

The Department of Food and Environmental Sciences, University of Helsinki, Finland and the Academy of Finland (SA and KP: AEROWOOD project number 281628; KSM: MESTA Project Number 268144) are gratefully acknowledged for financial support. M.T.C. gratefully acknowledges financial support from the Junta de Comunidades de Castilla-La Mancha (JCCM) under Project PPII-2014-025-P. NordForsk via PolyRefNorth network is thanked for funding SA’s research visit to Innventia, Stockholm, Sweden, and COST Action FP1105 for PAP’s visit to the Laboratory of Nanotechnology, University of Castilla-La Mancha, Almadén, Spain. We thank Prof. Lars Berglund and Assoc. Prof. Qi Zhou (WWSC, KTH, Stockholm, Sweden) for the CNF, Anne-Mari Olsson (Innventia) for helping with the DMA-analysis, M.Sc. Ângelo Lusuardi (University of Castilla-La Mancha) for helping with the AFM/UFM measurements, Abdul Ghafar (University of Helsinki, Finland) for helping with the optical microscope images, and Prof. Maija Tenkanen and Prof. Ritva Serimaa (University of Helsinki, Finland) for fruitful discussions and constructive suggestions.

Supplementary material

10570_2016_1010_MOESM1_ESM.avi (2.2 mb)
Supplementary material 1 (AVI 2251 kb)
10570_2016_1010_MOESM2_ESM.tiff (4 mb)
Supplementary material 2 (TIFF 4140 kb)

References

  1. Arboleda JC, Hughes M, Lucia LA, Laine J, Ekman K, Rojas OJ (2013) Soy protein-nanocellulose composite aerogels. Cellulose 20:2417–2426CrossRefGoogle Scholar
  2. ASTM (2010) Standard test method for compressive properties of rigid plastics. D695-10Google Scholar
  3. Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophilicity. Soft Matter 6:3298–3305CrossRefGoogle Scholar
  4. Chen W, Yu H, Li Q, Liu Y, Li J (2011) Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 7:10360–10368CrossRefGoogle Scholar
  5. Council of Europe (2007) Policy statement concerning paper and board materials and articles intended to come into contact with foodstuffs. Version 3. Council of Europe: Strasbourg Cedex. http://www.coe.int/t/e/social_cohesion/soc-sp/public_health/food_contact/PS%20E%20PAPER%20AND%20BOARD%20Version%203.pdf. Accessed 11 March 2015
  6. Cuberes MT (2009) Mechanical diode-based ultrasonic atomic force microscopies. In: Bhushan B, Fuchs H (eds) Applied Scanning Probe Methods XI. Springer, Berlin Heidelberg, pp 39–71CrossRefGoogle Scholar
  7. Dash R, Li Y, Ragauskas AJ (2012) Cellulose nanowhisker foams by freeze casting. Carbohydr Polym 88:789–792CrossRefGoogle Scholar
  8. Dax D, Chávez MS, Xu C, Willför S, Mendonça RT, Sánchez J (2014) Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohydr Polym 111:797–805CrossRefGoogle Scholar
  9. Dax D, Chávez Bastidas MS, Honorato C, Liu J, Spoljaric S, Seppälä J, Mendonça RT, Xu C, Willför S, Sánchez J (2015) Tailor-made hemicellulose-based hydrogels reinforced with nanofibrillated cellulose. Nord Pulp Paper Res J 30:373–384CrossRefGoogle Scholar
  10. Du A, Zhou B, Zhang Z, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6:941–968CrossRefGoogle Scholar
  11. Edlund U, Ryberg YZ, Albertsson AC (2010) Barrier films from renewable forestry waste. Biomacromolecules 11:2532–2538CrossRefGoogle Scholar
  12. FDA (2014) U.S. Food and Drug Administration. 21 CFR 176.170—Components of paper and paperboard in contact with aqueous and fatty foods. U.S. Government Printing Office: Washington DC. http://www.gpo.gov/fdsys/pkg/CFR-2014-title21-vol3/pdf/CFR-2014-title21-vol3-sec176-170.pdf. Accessed 11 March 2015
  13. García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438CrossRefGoogle Scholar
  14. Ghafar A, Parikka K, Sontag-Strohm T, Österberg M, Tenkanen M, Mikkonen KS (2015) Strengthening effect of nanofibrillated cellulose is dependent on enzymatically oxidized polysaccharide gel matrices. Eur Polym J 71:171–184CrossRefGoogle Scholar
  15. Grillet AM, Wyatt NB, Gloe LM (2012) Polymer gel rheology and adhesion. In: De Vicente J (ed) Rheology. InTech, New York, pp 59–80Google Scholar
  16. Hartman J, Albertsson AC, Söderqvist Lindblad M, Sjöberg J (2006) Oxygen barrier materials from renewable sources: material properties of softwood hemicellulose-based films. J Appl Polym Sci 100:2985–2991CrossRefGoogle Scholar
  17. Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36CrossRefGoogle Scholar
  18. Hidalgo JA, Montero-Ocampo C, Cuberes MT (2009) Nanoscale visualization of elastic inhomogeneities at TiN coatings using ultrasonic force microscopy. Nanoscale Res Lett 4:1493–1501CrossRefGoogle Scholar
  19. Kilpeläinen PO, Hautala SS, Byman OO, Tanner LJ, Korpinen RI, Lillandt MKJ, Pranovich AV, Kitunen VH, Willför SM, Ilvesniemi HS (2014) Pressurized hot water flow-through extraction system scale up from the laboratory to the pilot scale. Green Chem 16:3186–3194CrossRefGoogle Scholar
  20. Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36:52–64CrossRefGoogle Scholar
  21. Köhnke T, Lin A, Elder T, Theliander H, Ragauskas AJ (2012) Nanoreinforced xylan-cellulose composite foams by freeze-casting. Green Chem 14:1864–1869CrossRefGoogle Scholar
  22. Köhnke T, Elder T, Theliander H, Ragauskas AJ (2014) Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydr Polym 100:24–30CrossRefGoogle Scholar
  23. Maleki L, Edlund U, Albertsson AC (2015) Thiolated hemicellulose as a versatile platform for one-pot click-type hydrogel synthesis. Biomacromolecules 16:667–674CrossRefGoogle Scholar
  24. Marino S, Joshi GM, Lusuardi A, Cuberes TM (2014) Ultrasonic force microscopy on poly(vinyl alcohol)/SrTiO3 nano-perovskites hybrid films. Ultramicroscopy 142:32–39CrossRefGoogle Scholar
  25. Mikkonen KS, Tenkanen M (2012) Sustainable food-packaging materials based on future biorefinery products: xylans and mannans. Trends Food Sci Technol 28:90–102CrossRefGoogle Scholar
  26. Mikkonen KS, Heikkilä MI, Willför SM, Tenkanen M (2012) Films from glyoxal-crosslinked spruce galactoglucomannans plasticized with sorbitol. Int J Polym Sci. doi: 10.1155/2012/482810 Google Scholar
  27. Mikkonen KS, Parikka K, Ghafar A, Tenkanen M (2013a) Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci Technol 34:124–136CrossRefGoogle Scholar
  28. Mikkonen KS, Schmidt J, Vesterinen AH, Tenkanen M (2013b) Crosslinking with ammonium zirconium carbonate improves the formation and properties of spruce galactoglucomannan films. J Mater Sci 48:4205–4213CrossRefGoogle Scholar
  29. Mikkonen KS, Parikka K, Suuronen JP, Ghafar A, Serimaa R, Tenkanen M (2014) Enzymatic oxidation as a potential route to produce polysaccharide aerogels. RSC Adv 4:11884–11892CrossRefGoogle Scholar
  30. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRefGoogle Scholar
  31. Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRefGoogle Scholar
  32. Persson T, Nordin AK, Zacchi G, Jönsson AS (2007) Economic evaluation of isolation of hemicelluloses from process streams from thermomechanical pulping of spruce. Appl Biochem Biotechnol 136–140:741–752Google Scholar
  33. Quignard F, Valentin R, Di Renzo F (2008) Aerogel materials from marine polysaccharides. New J Chem 32:1300–1310CrossRefGoogle Scholar
  34. Salam A, Venditti RA, Pawlak JJ, El-Tahlawy K (2011) Crosslinked hemicellulose citrate-chitosan aerogel foams. Carbohydr Polym 84:1221–1229CrossRefGoogle Scholar
  35. Sjöström E (1993) Wood chemistry: fundamentals and applications, 2nd edn. Academic Press, San Diego, pp 51–70CrossRefGoogle Scholar
  36. Söderqvist Linblad M, Ranucci E, Albertsson AC (2001) Biodegradable polymers from renewable sources: new hemicellulose-based hydrogels. Macromol Rapid Commun 22:962–967CrossRefGoogle Scholar
  37. Söderqvist Lindblad M, Albertsson AC, Ranucci E, Laus M, Giani E (2005) Biodegradable polymers from renewable resources: rheological characterization of hemicellulose-based hydrogels. Biomacromolecules 6:684–690CrossRefGoogle Scholar
  38. Song D, Zhao Y, Dong C, Deng Y (2009) Surface modification of cellulose fibers by starch grafting with crosslinkers. J Appl Polym Sci 113:3019–3026CrossRefGoogle Scholar
  39. Song D, Breedveld V, Deng Y (2011a) Rheological study of self-crosslinking and co-crosslinking of ammonium zirconium carbonate and starch in aqueous solutions. J Appl Polym Sci 122:1019–1029CrossRefGoogle Scholar
  40. Song T, Pranovich A, Holmbom B (2011b) Characterization of Norway spruce hemicelluloses extracted by pressurised hot-water extraction (ASE) in the presence of sodium bicarbonate. Holzforschung 65:35–42CrossRefGoogle Scholar
  41. Sun CC (2008) Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. Int J of Pharm 346:93–101CrossRefGoogle Scholar
  42. Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRefGoogle Scholar
  43. Svagan AJ, Azizi Samir MAS, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater 20:1263–1269CrossRefGoogle Scholar
  44. Svagan AJ, Jensen P, Dvinskikh SV, Furó I, Berglund LA (2010) Towards tailored hierarchical structures in cellulose nanocomposite biofoams prepared by freezing/freeze-drying. J Mater Chem 20:6646–6654CrossRefGoogle Scholar
  45. Von Schoultz S (2013) Method for extracting biomass. US Patent Application 2015/0167234 A1, filed July 1, 2013Google Scholar
  46. Wang S, Zhang F, Chen F, Pang Z (2013) Preparation of a crosslinking cassava starch adhesive and its application in coating paper. Bioresources 8:3574–3589Google Scholar
  47. Willför S, Sundberg K, Tenkanen M, Holmbom B (2008) Spruce-derived mannans: a potential raw material for hydrocolloids and novel advanced natural materials. Carbohyd Polym 72:197–210Google Scholar
  48. www.aerogel.org. Accessed 15 June 2016Google Scholar
  49. Xu C, Willför S, Sundberg K, Petterson C, Holmbom B (2007) Physico-chemical characterization of spruce galactoglucomannan solutions: stability, surface activity and rheology. Cellulose Chem Technol 51:51–62Google Scholar
  50. Xu C, Willför S, Holmlund P, Holmbom B (2009) Rheological properties of water-soluble spruce O-acetyl galactoglucomannans. Carbohydr Polym 75:498–504CrossRefGoogle Scholar
  51. Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45:5711–5735CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  3. 3.Laboratory of NanotechnologyUniversity of Castilla-La ManchaAlmadénSpain
  4. 4.Johan Gadolin Process Chemistry Centre, Laboratory of Wood and Paper ChemistryÅbo Akademi, UniversityTurkuFinland
  5. 5.INNVENTIA, BiorefiningStockholmSweden

Personalised recommendations