, Volume 23, Issue 5, pp 2905–2916 | Cite as

Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment

  • Bushra RashidEmail author
  • Z. Leman
  • M. Jawaid
  • M. J. Ghazali
  • M. R. Ishak
Original Paper


Sugar palm fiber (SPF) is one of the prospective fibers used to reinforce polymer composites. The aim of this study is to evaluate the physicochemical, thermal, and morphological properties of SPF after alkali and sea water treatments. The chemical constituents group and thermal stability of the SPF were determined using scanning electronic microscopy (SEM) along with energy dispersive X-ray spectroscopy and thermogravimetric analysis (TGA). Fourier transform infrared spectroscopy was carried out to detect the presence of functional groups in untreated and treated SPF. The SEM images after both treatments showed that the external surface of the fiber became clean as a result. However, the sea water treatment affected the fiber properties physically, while the alkali treatment affected it both physically and chemically by dissolving the hemicellulose in the fiber. The TGA results showed that untreated fiber is significantly more stable than treated fiber. In conclusion, the results show that the fiber surface treatment significantly affected the characterization of the fiber.


Sugar palm fiber Alkali treatment Sea water treatment EDX FTIR TGA 



The authors are grateful for the financial support from Universiti Putra Malaysia via grant no. GP-IPS/2014/9447200. The authors would also like to thank the Ministry of Higher Education and Research of Iraq and the Institute of Technology, Middle Technical University, Baghdad, for the scholarship granted to the corresponding author.


  1. Acharya SK, Mishra P, Mehar SK (2011) Effect of surface treatment on the mechanical properties of bagasse fiber reinforced polymer composite. BioResources 6:3155–3165. doi: 10.15376/biores.6.3.3155-3165 Google Scholar
  2. AlMaadeed M, Kahraman R, Khanam PN, Al-Maadeed S (2013) Characterization of untreated and treated male and female date palm leaves. Mater Des 43:526–531. doi: 10.1016/j.matdes.2012.07.028 CrossRefGoogle Scholar
  3. Bachtiar D, Sapuan S, Hamdan M (2009) The influence of alkaline surface fibre treatment on the impact properties of sugar palm fibre-reinforced epoxy composites. Polym Plast Technol Eng 48:379–383. doi: 10.1080/03602550902725373 CrossRefGoogle Scholar
  4. Bachtiar D, Sapuan SM, Hamdan MM (2010) Flexural properties of alkaline treated sugar palm fibre reinforced epoxy composites. Int J Automot Mech Eng IJAME 1:79–90CrossRefGoogle Scholar
  5. Bachtiar D, Sapuan S, Khalina A, Zainudin E, Dahlan K (2012) The flexural, impact and thermal properties of untreated short sugar palm fibre reinforced high impact polystyrene(hips) composites. Polym Polym Compos 20:493–502Google Scholar
  6. Bachtiar D, Salit MS, Zainudin ES, Abdan K, Dahlan M, Zaman K (2013) Thermal properties of alkali-treated sugar palm fibre reinforced high impact polystyrene composites. Pertanika J Sci Technol 21:141–150Google Scholar
  7. Boeriu CG, Bravo D, Gosselink RJ, van Dam JE (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 20:205–218. doi: 10.1016/j.indcrop.2004.04.022 CrossRefGoogle Scholar
  8. Goriparthi BK, Suman K, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos Part A Appl Sci Manuf 43:1800–1808. doi: 10.1016/j.compositesa.2012.05.007 CrossRefGoogle Scholar
  9. Haque MM-U, Maniruzzaman M, Reza MS (2016) Thermal and tensile mechanical behavior of polystyrene graft acetic anhydride-treated pulque fibers. J Nat Fibers 13:125–136. doi: 10.1080/15440478.2014.984057 CrossRefGoogle Scholar
  10. Ibrahim MS, Sapuan SM, Faieza AA (2012) Mechanical and thermal properties of composites from unsaturated polyester filled with oil palm ash. J Mech Eng Sci JMES 2:181–186CrossRefGoogle Scholar
  11. Ishak MR, Leman Z, Sapuan SM, Salleh MY, Misri S (2009) The effect of sea water treatment on the impact and flexural strength of sugar palm fibre reinforced epoxy composites. IJMME Malaysia 4:316–320Google Scholar
  12. Ishak MR, Leman Z, Sapuan SM, Rahman M, Anwar U (2012) Characterization of sugar palm (Arenga pinnata) fibres. J Therm Anal Calorim 109:981–989. doi: 10.1007/s10973-011-1785-1 CrossRefGoogle Scholar
  13. Ishak MR, Leman Z, Sapuan SM, Rahman M, Anwar U (2013a) IFSS, TG, FT-IR spectra of impregnated sugar palm (Arenga pinnata) fibres and mechanical properties of their composites. J Therm Anal Calorim 111:1375–1383. doi: 10.1007/s10973-012-2457-5 CrossRefGoogle Scholar
  14. Ishak MR, Leman Z, Sapuan SM, Rahman M, Anwar U (2013b) Impregnation modification of sugar palm fibres with phenol formaldehyde and unsaturated polyester. Fiber Polym 14:250–257. doi: 10.1007/s12221-013-0250-0 CrossRefGoogle Scholar
  15. Ishak MR, Sapuan SM, Leman Z, Rahman M, Anwar U, Siregar J (2013c) Sugar palm (Arenga pinnata): its fibres, polymers and composites. Carbohydr Polym 91:699–710. doi: 10.1016/j.carbpol.2012.07.073 CrossRefGoogle Scholar
  16. Joseph S, Sreekala M, Thomas S (2008) Effect of chemical modifications on the thermal stability and degradation of banana fiber and banana fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci 110:2305–2314. doi: 10.1002/app.27648 CrossRefGoogle Scholar
  17. Khan GA, Shaikh H, Alam MS, Gafur MA, Al-Zahrani SM (2015) Effect of chemical treatments on the physical properties of non-woven jute/PLA biocomposites. BioResources 10:7386–7404. doi: 10.15376/biores.10.4.7386-7404 CrossRefGoogle Scholar
  18. Leman Z, Sapuan S, Azwan M, Ahmad M, Maleque M (2008) The effect of environmental treatments on fiber surface properties and tensile strength of sugar palm fiber-reinforced epoxy composites. Polym Plast Technol Eng 47:606–612. doi: 10.1080/03602550802059451 CrossRefGoogle Scholar
  19. Liu Z, Fei B (2013) Characteristics of moso bamboo with chemical pretreatment. In: Chandel AK, da Silva SS (eds) Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. InTech, Croatia, pp 3–14Google Scholar
  20. Luo Huachao L, Jing RS, Guizhen F, Guiquan J (2015) Studies of polyvinyl alcohol/alkali lignin/silica composite foam material (plcfm). BioResources 10:5961–5973. doi: 10.15376/biores.10.3.5961-5973 Google Scholar
  21. Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci. doi: 10.1155/2015/243947 Google Scholar
  22. Obasi H, Iheaturu N, Onuoha F, Chike-Onyegbula C, Akanbi M, Eze V (2014) Influence of alkali treatment and fibre content on the properties of oil palm press fibre reinforced epoxy biocomposites. Am J Eng Res AJER 3:117–123Google Scholar
  23. Paluvai NR, Mohanty S, Nayak S (2015) Studies on thermal degradation and flame retardant behavior of the sisal fiber reinforced unsaturated polyester toughened epoxy nanocomposites. J Appl Polym Sci. doi: 10.1002/app.42068 Google Scholar
  24. Pickering K, Efendy MA, Le T (2015) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci. doi: 10.1016/j.compositesa.2015.08.038 Google Scholar
  25. Przybylak M, Maciejewski H, Dutkiewicz A, Dąbek I, Nowicki M (2016) Fabrication of superhydrophobic cotton fabrics by a simple chemical modification. Cellulose. doi: 10.1007/s10570-016-0940-z Google Scholar
  26. Rajkumar R, Manikandan A, Saravanakumar SS (2016) Physicochemical properties of alkali treated new cellulosic fiber from cotton shell. Int J Polym Anal Charact 1:1–6. doi: 10.1080/1023666X.2016.1160509 Google Scholar
  27. Rashid B, Lemanl Z, Jawaid M, Ghazali MJ, Ishak MR (2016) The mechanical performance of sugarpalm fibres reinforced phenolic composites. Int J Precis Eng Manuf 17(8):1–8CrossRefGoogle Scholar
  28. Razali N, Salit MS, Jawaid M, Ishak MR, Lazim Y (2015) A study on chemical composition, physical, tensile, morphological, and thermal properties of roselle fibre: effect of fibre maturity. BioResources 10:1803–1824. doi: 10.15376/biores.10.1.1803-1824 CrossRefGoogle Scholar
  29. Reddy N, Yang Y (2015) Biocomposites using lignocellulosic agricultural residues as reinforcement· In: Innovative biofibers from renewable resources. Springer, Heidelberg, pp 391–417. doi: 10.1007/978-3-662-45136-6_68
  30. Rudnik E (2007) Thermal properties of biocomposites. J Therm Anal Calorim 88:495–498. doi: 10.1007/s10973-006-8127-8 CrossRefGoogle Scholar
  31. Saba N, Paridah M, Jawaid M, Abdan K, Ibrahim N (2015) Potential utilization of kenaf biomass in different applications. In: Agricultural biomass based potential materials. Springer, Switzerland, pp 1–34. doi:  10.1007/978-3-319-13847-3_1
  32. Sahari J, Sapuan S, Ismarrubie Z, Rahman M (2012) Physical and chemical properties of different morphological parts of sugar palm fibres. Fibres Text East Eur 91:21–24Google Scholar
  33. Sanyang M, Sapuan S, Jawaid M, Ishak M, Sahari J (2016) Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: a review. Renew Sust Energy Rev 54:533–549. doi: 10.1016/j.rser.2015.10.037 CrossRefGoogle Scholar
  34. Sathishkumar T, Navaneethakrishnan P, Shankar S, Rajasekar R, Rajini N (2013) Characterization of natural fiber and composites—a review. J Reinf Plast Compos 32:1457–1476CrossRefGoogle Scholar
  35. Sutikno M, Marwoto P, Rustad S (2010) The mechanical properties of carbonized coconut char powder-based friction materials. Carbon 48:3616–3620. doi: 10.1016/j.carbon.2010.06.015 CrossRefGoogle Scholar
  36. Thakur MK, Rana AK, Liping Y, Singha AS, Thakur VK (2015) Surface modification of biopolymers. In: Thakur VK, Singha AS (eds) Surface modification of biopolymers. Wiley, Hoboken, NJ. doi: 10.1002/9781119044901.ch1
  37. Wei C, Zeng M, Xiong X, Liu H, Luo K, Liu T (2015) Friction properties of sisal fiber/nano-silica reinforced phenol formaldehyde composites. Carbon 36:433–438. doi: 10.1002/pc.22957 Google Scholar
  38. Yusriah L, Sapuan S, Zainudin ES, Mariatti M (2014) Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. J Clean Prod 72:174–180. doi: 10.1016/j.jclepro.2014.02.025 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Bushra Rashid
    • 1
    • 2
    Email author
  • Z. Leman
    • 1
  • M. Jawaid
    • 3
  • M. J. Ghazali
    • 4
  • M. R. Ishak
    • 3
    • 5
  1. 1.Department of Mechanical and Manufacturing EngineeringUniversiti Putra Malaysia (UPM)SerdangMalaysia
  2. 2.Institute of TechnologyMiddle Technical UniversityAlzafaranya, BaghdadIraq
  3. 3.Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP)Universiti Putra Malaysia (UPM)SerdangMalaysia
  4. 4.Department of Mechanical and MaterialsUniversiti Kebangsaan MalaysiaBangiMalaysia
  5. 5.Department of Aerospace EngineeringUniversiti Putra Malaysia (UPM)SerdangMalaysia

Personalised recommendations