Skip to main content
Log in

Effect of alkaline pretreatment on the preparation of regenerated lignocellulose fibers from bamboo stem

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, the effect of alkaline pretreatment on preparation of regenerated lignocellulose fibers from bamboo stem was studied in detail. Prior to being dissolved in [Emim]OAc, bamboo stems were ground and treated with different concentrations of sodium hydroxide solutions. The obtained spinning dopes were then extruded into water coagulation bath and regenerated to composite fibers. The properties of the raw materials, spinning dopes, and regenerated fibers were investigated. Results showed that alkaline pretreatment could break the rigid structure of lignocelluloses by removing part of hemicelluloses and lignin as well as changing the polymorphous lattice and C r I of cellulose. The increased specific surface area of raw materials enhanced the accessibility of solvent, promoted the swelling process and shortened the dissolution time. The viscosity of the spinning dopes and the strength of the regenerated fiber reached the maximum value when the bamboo powder was treated with 20 wt% sodium hydroxide at 60 °C for 4 h. In addition, the fibers prepared from the alkali-treated raw materials showed round cross-section and wrinkled surface. Therefore, the properties of the regenerated lignocellulose fibers could be improved by employing an appropriate alkali pretreatment of raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8:576–581. doi:10.1016/j.tplants.2003.10.001

    Article  CAS  Google Scholar 

  • Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583. doi:10.1039/c2gc36364j

    Article  CAS  Google Scholar 

  • Chen M, Zhang X, Liu C, Sun R, Lu F (2014) Approach to renewable lignocellulosic biomass film directly from bagasse. ACS Sustain Chem Eng 2:1164–1168. doi:10.1021/sc400555v

    Article  CAS  Google Scholar 

  • Chen JH, Guan Y, Wang K, Zhang XM, Xu F, Sun RC (2015a) Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers. Carbohydr Polym 128:147–153

    Article  CAS  Google Scholar 

  • Chen JH, Guan Y, Wang K, Xu F, Sun RC (2015b) Regulating effect of hemicelluloses on the preparation and properties of composite Lyocell fibers. Cellulose 22:1505–1516

    Article  CAS  Google Scholar 

  • De Micco V, Aronne G (2007) Combined histochemistry and autofluorescence for identifying lignin distribution in cell walls. Biotech Histochem 82:209–216

    Article  Google Scholar 

  • Dorn S (2009) Ionische Flüssigkeiten: Neue Lösemittel und Reaktionsmedien in der Cellulosechemie, PhD Thesis FSU Jena

  • Du XY, Gellerstedt G, Li JB (2013) Universal fractionation of lignin-carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. Plant J 74:328–338

    Article  CAS  Google Scholar 

  • Eronen P, Österberg M, Jääskeläinen A-S (2009) Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy. Cellulose 16:167–178. doi:10.1007/s10570-008-9259-8

    Article  CAS  Google Scholar 

  • FitzPatrick M, Champagne P, Cunningham MF (2012) Quantitative determination of cellulose dissolved in 1-ethyl-3-methylimidazolium acetate using partial least squares regression on FTIR spectra. Carbohydr Polym 87:1124–1130

    Article  CAS  Google Scholar 

  • Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63. doi:10.1039/b607614a

    Article  CAS  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  • Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559

    Article  CAS  Google Scholar 

  • Kang Y, Ahn Y, Lee SH, Hong JH, Ku MK, Kim H (2013) Lignocellulosic nanofiber prepared by alkali treatment and electrospinning using ionic liquid. Fiber Polym 14:530–536

    Article  CAS  Google Scholar 

  • Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agr Food Chem 55:9142–9148. doi:10.1021/jf071692e

    Article  Google Scholar 

  • Kotarska K, Swierczynska A, Dziemianowicz W (2015) Study on the decomposition of lignocellulosic biomass and subjecting it to alcoholic fermentation Study on the decomposition of lignocellulosic biomass. Renew Energ 75:389–394

    Article  CAS  Google Scholar 

  • Kyllonen L, Parviainen A, Deb S, Lawoko M, Gorlov M, Kilpelainen I, King AWT (2013) On the solubility of wood in non-derivatising ionic liquids. Green Chem 15:2374–2378. doi:10.1039/c3gc41273c

    Article  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  Google Scholar 

  • Li WY, Sun N, Stoner B, Jiang XY, Lu XM, Rogers RD (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038–2047

    Article  CAS  Google Scholar 

  • Loerbroks C, Rinaldi R, Thiel W (2013) The electronic nature of the 1,4-glycosidic bond and its chemical environment: DFT insights into cellulose chemistry. Chem-Eur J 19:16282–16294. doi:10.1002/chem.201301366

    Article  CAS  Google Scholar 

  • Lu F, Song J, Cheng BW, Ji XJ, Wang LJ (2013) Viscoelasticity and rheology in the regimes from dilute to concentrated in cellulose 1-ethyl-3-methylimidazolium acetate solutions. Cellulose 20:1343–1352

    Article  CAS  Google Scholar 

  • Maki-Arvela P, Anugwom I, Virtanen P, Sjoholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids-a review. Ind Crop Prod 32:175–201. doi:10.1016/j.indcrop.2010.04.005

    Article  Google Scholar 

  • McIntosh S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol 101:6718–6727

    Article  CAS  Google Scholar 

  • Michels C, Kosan B (2006) Beitrag zur Struktur von Lyocellfasern, ersponnen aus Aminoxidhydraten bzw. ionischen Flüssigkeiten. Lenzinger Ber 86:144–153

    CAS  Google Scholar 

  • Michud A, Hummel M, Haward S, Sixta H (2015) Monitoring of cellulose depolymerization in 1-ethyl-3-methylimidazolium acetate by shear and elongational rheology. Carbohydr Polym 117:355–363

    Article  CAS  Google Scholar 

  • Muhammad N, Man Z, Khalil MAB (2012) Ionic liquid—a future solvent for the enhanced uses of wood biomass. Eur J Wood Wood Prod 70:125–133

    Article  CAS  Google Scholar 

  • Pan JY, Fu J, Deng SG, Lu XY (2014) Microwave-assisted degradation of lignin model compounds in imidazolium-based ionic liquids. Energ Fuel 28:1380–1386

    Article  CAS  Google Scholar 

  • Park YC, Kim JS (2012) Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy 47:31–35

    Article  CAS  Google Scholar 

  • Peng F, Peng P, Xu F, Sun RC (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30:879–903

    Article  CAS  Google Scholar 

  • Ragauskas AJ et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  • Schleicher H, Philipp B, Kunze J, Fink HP (1985) Neue Ergebnisse zur Bildung und Reaktionsweise von Alkalicellulose. Lenzinger Ber 59:45–51

    CAS  Google Scholar 

  • Simmons TJ et al (2010) Preparation of synthetic wood composites using ionic liquids. Wood Sci Technol 45:719–733. doi:10.1007/s00226-010-0395-6

    Article  Google Scholar 

  • Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646. doi:10.1039/b822702k

    Article  CAS  Google Scholar 

  • Sun N, Li W, Stoner B, Jiang X, Lu X, Rogers RD (2011a) Composite fibers spun directly from solutions of raw lignocellulosic biomass dissolved in ionic liquids. Green Chem 13:1158–1161. doi:10.1039/c1gc15033b

    Article  CAS  Google Scholar 

  • Sun N, Rodriguez H, Rahman M, Rogers RD (2011b) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421. doi:10.1039/c0cc03990j

    Article  CAS  Google Scholar 

  • Viell J (2014) A pre-treatment process of wood based on ionic liquids. Rwth Aachen 23:15–19

    Google Scholar 

  • Wang H et al (2014) Physical insight into switchgrass dissolution in ionic liquid 1-ethyl-3-methylimidazolium acetate. ACS Sustain Chem Eng 2:1264–1269

    Article  CAS  Google Scholar 

  • Wen JL, Xiao LP, Sun YC, Sun SN, Xu F, Sun RC, Zhang XL (2011) Comparative study of alkali-soluble hemicelluloses isolated from bamboo (Bambusa rigida). Carbohydr Res 346:111–120. doi:10.1016/j.carres.2010.10.006

    Article  CAS  Google Scholar 

  • Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  • Zavrel M, Bross D, Funke M, Buchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587. doi:10.1016/j.biortech.2008.11.052

    Article  CAS  Google Scholar 

  • Zheng Y, Zhao J, Xu FQ, Li YB (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Progr Energy Combust Sci 42:35–53

    Article  Google Scholar 

  • Zhou LL, Wu TH, Wu Y (2012) Degradation and conversion of cellulose in ionic liquids. Prog Chem 24:1533–1543

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support from the Program of International S&T Cooperation of China (2015DFG31860), and the Fundamental Research Funds from the Central Universities (2015ZCQ-CL-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-Cang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JH., Xu, JK., Huang, PL. et al. Effect of alkaline pretreatment on the preparation of regenerated lignocellulose fibers from bamboo stem. Cellulose 23, 2727–2739 (2016). https://doi.org/10.1007/s10570-016-0983-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0983-1

Keywords

Navigation