Cellulose

, Volume 23, Issue 4, pp 2627–2638 | Cite as

A green and simple method for preparation of an efficient palladium adsorbent based on cysteine functionalized 2,3-dialdehyde cellulose

Original Paper

Abstract

A green and efficient adsorbent for adsorption of palladium ions was prepared from 2,3-dialdehyde cellulose (DAC) originating from nanocellulose from the green algae Cladophora. The DAC was functionalized with cysteine via reductive amination in a convenient one-pot procedure to provide the adsorbent. The adsorption properties for adsorbing palladium(II) ions, including capacity, adsorption isotherm and kinetics, were studied. The successful reductive amination of cysteine with 2,3-dialdehyde cellulose was confirmed by FT-IR, elemental analysis and XPS. The adsorbent was characterized by SEM, XRD, gas adsorption and TGA. The adsorbent had a high adsorption capacity (130 mg palladium per gram adsorbent) and enabled fast adsorption of palladium(II) ions from solution (80 % of maximum capacity reached in 2 h). Adsorbent materials suitable for both filters (fibrous) and column matrixes (spherical particles) could be obtained in an efficient manner by controlling the degree of oxidation while producing the DAC material.

Keywords

2,3-dialdehyde cellulose Palladium adsorption Cellulose beads Nanocellulose 

Notes

Acknowledgments

Ollie and Elof Ericsson´s Foundation as well as the Bo Rydin Foundation are gratefully acknowledged for their financial support. Changqing Ruan thanks the China Scholarship Council (CSC) for financial support.

References

  1. Anpilogova GR, Bondareva SO, Khisamutdinov RA, Murinov YI (2014) Fatty imidazolines: a novel extractant for the recovery of palladium(ii) from hydrochloric acid solutions. Solv Extr Ion Exch 32:206–220. doi: 10.1080/07366299.2013.838498 CrossRefGoogle Scholar
  2. Awual MR, Yaita T, El-Safty SA, Shiwaku H, Okamoto Y, Suzuki S (2013) Investigation of palladium(II) detection and recovery using ligand modified conjugate adsorbent. Chem Eng J 222:172–179. doi: 10.1016/j.cej.2013.02.058 CrossRefGoogle Scholar
  3. Barakat MA, Mahmoud MHH, Mahrous YS (2006) Recovery and separation of palladium from spent catalyst. Appl Catal A 301:182–186. doi: 10.1016/j.apcata.2005.11.028 CrossRefGoogle Scholar
  4. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi: 10.1021/ja01269a023 CrossRefGoogle Scholar
  5. Bruneel D, Schacht E (1993) Chemical modification of pullulan: 1. Periodate oxidation. Polymer 34:2628–2632. doi: 10.1016/0032-3861(93)90600-F CrossRefGoogle Scholar
  6. Carlsson DO, Lindh J, Nyholm L, Strømme M, Mihranyan A (2014) Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water. Rsc Advances 4:52289–52298. doi: 10.1039/c4ra11182f CrossRefGoogle Scholar
  7. Carlsson DO, Lindh J, Strømme M, Mihranyan A (2015) Susceptibility of Iα- and Iβ-dominated cellulose to tempo-mediated oxidation. Biomacromolecules 16:1643–1649. doi: 10.1021/acs.biomac.5b00274 CrossRefGoogle Scholar
  8. Casu B, Naggi A, Torri G, Allegra G, Meille SV, Cosani A, Terbojevich M (1985) Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose. Macromolecules 18:2762–2767. doi: 10.1021/ma00154a068 CrossRefGoogle Scholar
  9. Cosenza VA, Navarro DA, Stortz CA (2011) Usage of alpha-picoline borane for the reductive amination of carbohydrates. Org Chem Argent 2011:182–194. doi: 10.3998/ark.5550190.0012.716 Google Scholar
  10. Freundlich HMA (1906) Concerning adsorption in solutions. J Phys Chem 57:385–470Google Scholar
  11. Fujiwara K, Ramesh A, Maki T, Hasegawa H, Ueda K (2007) Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. J Hazard Mater 146:39–50. doi: 10.1016/j.jhazmat.2006.11.049 CrossRefGoogle Scholar
  12. Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836. doi: 10.1021/cr300242j CrossRefGoogle Scholar
  13. Gupta VK, Jain CK, Ali I, Sharma M, Saini VK (2003) Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. W Res 37:4038–4044. doi: 10.1016/S0043-1354(03)00292-6 CrossRefGoogle Scholar
  14. Gupta VK, Mittal A, Gajbe V, Mittal J (2006) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446–1453. doi: 10.1021/ie051111f CrossRefGoogle Scholar
  15. Jermakowicz-Bartkowiak D, Kolarz BN, Serwin A (2005) Sorption of precious metals from acid solutions by functionalised vinylbenzyl chloride–acrylonitryle–divinylbenzene copolymers bearing amino and guanidine ligands. React Funct Polym 65:135–142. doi: 10.1016/j.reactfunctpolym.2004.11.010 CrossRefGoogle Scholar
  16. Kitkulnumchai Y, Ajavakom A, Sukwattanasinitt M (2008) Treatment of oxidized cellulose fabric with chitosan and its surface activity towards anionic reactive dyes. Cellulose 15:599–608. doi: 10.1007/s10570-008-9214-8 CrossRefGoogle Scholar
  17. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem-Int Edit 44:3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  18. Lagergren S (1898) Kungliga Svenska Vetenskapsakademiens, vol 24. Vetensk, HandlGoogle Scholar
  19. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. doi: 10.1021/ja02242a004 CrossRefGoogle Scholar
  20. Li GQ, Konishi S, Saito K, Sugo T (1994) High collection rate of Pd in hydrochloric-acid medium using chelating microporous membrane. J Membr Sci 95:63–69. doi: 10.1016/0376-7388(94)85029-1 CrossRefGoogle Scholar
  21. Lim JS, Kim SM, Lee SY, Stach EA, Culver JN, Harris MT (2011) Surface functionalized silica as a toolkit for studying aqueous phase palladium adsorption and mineralization on thiol moiety in the absence of external reducing agents. J Coll Interf Sci 356:31–36. doi: 10.1016/j.jcis.2010.12.064 CrossRefGoogle Scholar
  22. Lindh J, Carlsson DO, Strømme M, Mihranyan A (2014) Convenient one-pot formation of 2,3-dialdehyde cellulose beads via periodate oxidation of cellulose in water. Biomacromolecules 15:1928–1932. doi: 10.1021/bm5002944 CrossRefGoogle Scholar
  23. Lindh J, Ruan C, Strømme M, Mihranyan A (2016) Preparation of porous cellulose beads via introduction of diamine spacers. Langmuir. doi: 10.1021/acs.langmuir.6b01288 Google Scholar
  24. Liu K, Yen W, Shibayama A, Fujita T (2003) Selective leaching of platinum and palladium by chloride solution. In: Proceedings of the TMS Fall Extraction and Processing Conference, pp 1617–1628Google Scholar
  25. Maekawa E, Koshijima T (1984) Properties of 2,3-dicarboxy cellulose combined with various metallic ions. J Appl Polym Sci 29:2289–2297. doi: 10.1002/app.1984.070290705 CrossRefGoogle Scholar
  26. Metreveli G, Wagberg L, Emmoth E, Belak S, Stromme M, Mihranyan A (2014) A size-exclusion nanocellulose filter paper for virus removal. Adv Healthc Mater 3:1546–1550. doi: 10.1002/adhm.201300641 CrossRefGoogle Scholar
  27. Mihranyan A (2011) Cellulose from Cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Polym Sci 119:2449–2460. doi: 10.1002/app.32959 CrossRefGoogle Scholar
  28. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Palo AltoGoogle Scholar
  29. Nada A, Hassan ML (2006) Ion exchange properties of carboxylated bagasse. J Appl Polym Sci 102:1399–1404. doi: 10.1002/app.24255 CrossRefGoogle Scholar
  30. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108:3443–3480. doi: 10.1021/cr068000q CrossRefGoogle Scholar
  31. Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769. doi: 10.1002/adma.201004134 Google Scholar
  32. Paiva AP, Carvalho GI, Costa MC, da Costa AMR, Nogueira C (2014) Recovery of platinum and palladium from chloride solutions by a thiodiglycolamide derivative. Solv Extr Ion Exch 32:78–94. doi: 10.1080/07366299.2013.810969 CrossRefGoogle Scholar
  33. Panchompoo J, Aldous L, Compton RG (2011) Irreversible uptake of palladium from aqueous systems using l-cysteine methyl esterphysisorbed on carbon black. J Mater Chem 21:9513–9522. doi: 10.1039/C0JM04493H CrossRefGoogle Scholar
  34. Products CfPM (17th December, 2002) European agency for the evaluation of medicinal products. Evaluation of Medicines for Human Use, London, UKGoogle Scholar
  35. Qishu Q, Qian G, Zuli G, Yuqi S, Chengyin W, Xiaoya H (2012) Efficient removal of heavy metal from aqueous solution by sulfonic acid functionalized nonporous silica microspheres. Coll Surf Physicochem Eng Asp 415:41–46. doi: 10.1016/j.colsurfa.2012.08.059 CrossRefGoogle Scholar
  36. Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A (2012) Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-Cladophora nanocellulose composite electrodes. Adv Energy Mater 2:445–454. doi: 10.1002/aenm.201100713 CrossRefGoogle Scholar
  37. Rowen JW, Forziati FH, Reeves RE (1951) Spectrophotometric evidence for the absence of free aldehyde groups in periodate-oxidized cellulose. J Am Chem Soc 73:4484–4487. doi: 10.1021/ja01153a535 CrossRefGoogle Scholar
  38. Ruhaak LR, Steenvoorden E, Koeleman CAM, Deelder AM, Wuhrer M (2010) 2-Picoline-borane: a non-toxic reducing agent for oligosaccharide labeling by reductive amination. Proteomics 10:2330–2336. doi: 10.1002/pmic.200900804 CrossRefGoogle Scholar
  39. Sabzalian Z, Alam MN, van de Ven TGM (2014) Hydrophobization and characterization of internally crosslink-reinforced cellulose fibers. Cellulose 21:1381–1393. doi: 10.1007/s10570-014-0178-6 Google Scholar
  40. Sağ Y (2001) Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a review. Sep Purif Rev 30:1–48. doi: 10.1081/SPM-100102984 CrossRefGoogle Scholar
  41. Sato S, Sakamoto T, Miyazawa E, Kikugawa Y (2004) One-pot reductive amination of aldehydes and ketones with alpha-picoline-borane in methanol, in water, and in neat conditions. Tetrahedron 60:7899–7906. doi: 10.1016/j.tet.2004.06.045 CrossRefGoogle Scholar
  42. Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
  43. Sharma S, Rajesh N (2014) 2-Mercaptobenzothiazole impregnated cellulose prepared by ultrasonication for the effective adsorption of precious metal palladium. Chem Eng J 241:112–121. doi: 10.1016/j.cej.2013.12.002 CrossRefGoogle Scholar
  44. Sparks DL (ed) (1986) Kinetics of reactions in pure and in mixed systems. In: Soil physical chemistry. CRC Press, Boca Raton, pp 83–145Google Scholar
  45. Spedding H (1960) Infrared spectra of periodate-oxidised cellulose. J Chem Soc 73:3147–3152. doi: 10.1039/JR9600003147 CrossRefGoogle Scholar
  46. Su SX, Nutiu R, Filipe CDM, Li YF, Pelton R (2007) Adsorption and covalent coupling of ATP-binding DNA aptamers onto cellulose. Langmuir 23:1300–1302. doi: 10.1021/la060961c CrossRefGoogle Scholar
  47. Takaichi S, Hiraoki R, Inamochi T, Isogai A (2014) One-step preparation of 2,3,6-tricarboxy cellulose. Carbohydr Polym 110:499–504. doi: 10.1016/j.carbpol.2014.03.085 CrossRefGoogle Scholar
  48. Venkatesan KA, Selvan BR, Antony MP, Srinivasan TG, Rao PRV (2005) Extraction of palladium from nitric acid medium by commercial resins with phosphinic acid, methylene thiol and isothiouronium moieties attached to polystyrene-divinylbenzene. J Radioanal Nucl Chem 266:431–440. doi: 10.1007/s10967-005-0928-x CrossRefGoogle Scholar
  49. Vincent T, Guibal E, Chiarizia R (2007) Palladium recovery by reactive precipitation using a cyanex 301-based stable emulsion. Sep Sci Technol 42:3517–3536. doi: 10.1080/01496390701626735 CrossRefGoogle Scholar
  50. Wasikiewicz JM, Mitomo H, Seko N, Tamada M, Yoshii F (2007) Platinum and palladium ions adsorption at the trace amounts by radiation crosslinked carboxymethylchitin and carboxymethylchitosan hydrogels. J Appl Polym Sci 104:4015–4023. doi: 10.1002/app.26034 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Nanotechnology and Functional Materials, Department of Engineering SciencesUppsala UniversityUppsalaSweden

Personalised recommendations