Cellulose

, Volume 23, Issue 4, pp 2315–2323 | Cite as

Role of hydrogen bonding in cellulose deformation: the leverage effect analyzed by molecular modeling

  • Cyrus Djahedi
  • Malin Bergenstråhle-Wohlert
  • Lars A. Berglund
  • Jakob Wohlert
Original Paper
  • 430 Downloads

Abstract

The axial modulus of the cellulose Iβ crystal is as high as 120–160 GPa. The importance of hydrogen bonds is often emphasized in this context, although intrinsic stiffness of the hydrogen bonds is relatively low. Here, hydrogen bond–covalent bond synergies are investigated quantitatively using molecular mechanics and molecular dynamics simulations for the so-called leverage effect, a model introduced recently in which strains for intra-molecular hydrogen bonds are higher than for the cellulose chain as a whole, thereby amplifying their contribution to the total stiffness. The present work also includes simulation of the hydrogen bonding band shifts in vibrational spectra during cellulose deformation, which are compared with FT-IR data. The leverage effect hypothesis was supported by the results, although the total contribution to cellulose stiffness is only 12 %. Hydrogen bonding is still critically important and would lower the modulus much more than 12 %, if “artificially” removed in the model. The reason is that intra-molecular hydrogen bonding preserves the crystal structure and directs axial deformation mechanisms towards higher energy deformation and high stiffness.

Keywords

Axial modulus Molecular dynamics simulation Molecular mechanics Spring model 

References

  1. Altaner CM, Thomas LH, Fernandes AN, Jarvis MC (2014) How cellulose stretches: synergism between covalent and hydrogen bonding. Biomacromolecules 15:791–798CrossRefGoogle Scholar
  2. Berens PH, Mackay DHJ, White GM, Wilson KM (1983) Thermodynamics and quantum corrections from molecular dynamics for liquid water. J Chem Phys 79:2375–2389CrossRefGoogle Scholar
  3. Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35:201–207CrossRefGoogle Scholar
  4. Bussi G, Donadio D, Parrinello M (2007) Canonocal sampling through velocity rescaling. J Chem Phys 126:014101CrossRefGoogle Scholar
  5. Caleman C, van Maren PJ, Hong M, Hub JS, Costa LT, van der Spoel D (2012) Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J Chem Theory Comput 8:61–74CrossRefGoogle Scholar
  6. Cintrón MS, Johnson GP, French AD (2011) Young’s modulus calculations for cellulose Ib by MM3 and quantum mechanics. Cellulose 18:505–516CrossRefGoogle Scholar
  7. Darden T, York D, Pedersen L (1993) Partice mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  8. Djahedi C, Berglund LA, Wohlert J (2015) Molecular deformation mechanisms in cellulose allomorphs and the role of hydrogen bonds. Carbohydr Polym 130:175–182CrossRefGoogle Scholar
  9. Essmann U, Perera L, Berkowits ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592CrossRefGoogle Scholar
  10. Henniges U, Kostic M, Borgards A, Rosenau T, Potthast A (2011) Dissolution behavior of different celluloses. Biomacromolecules 12:871–879CrossRefGoogle Scholar
  11. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  12. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  13. Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley L, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydr J Comput Chem 29:622–655CrossRefGoogle Scholar
  14. Kroon-Batenburg LMJ, Kroon J, Northolt MG (1986) Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polym Commun 27:290–293CrossRefGoogle Scholar
  15. Lee CM, Mohamed NMA, Watts D, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117:6681–6692CrossRefGoogle Scholar
  16. Maréchal Y, Chanzy H (2000) The hydrogen bond network in Ib cellulose as observed by infrared spectroscopy. J Mol Struct 523:183–196CrossRefGoogle Scholar
  17. Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (In)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRefGoogle Scholar
  18. Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models. J Comput Chem 13:952–962CrossRefGoogle Scholar
  19. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  20. Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B Polym Phys Ed 33:1647–1651CrossRefGoogle Scholar
  21. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  22. Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140CrossRefGoogle Scholar
  23. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRefGoogle Scholar
  24. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854CrossRefGoogle Scholar
  25. Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16:975–982CrossRefGoogle Scholar
  26. Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRefGoogle Scholar
  27. Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526CrossRefGoogle Scholar
  28. Wohlert J, Bergenstråhle-Wohlert M, Berglund LA (2012) Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence. Cellulose 19:1821–1836CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Cyrus Djahedi
    • 1
  • Malin Bergenstråhle-Wohlert
    • 1
  • Lars A. Berglund
    • 1
  • Jakob Wohlert
    • 1
  1. 1.Department of Fiber and Polymer Technology, Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations