, Volume 23, Issue 4, pp 2597–2607 | Cite as

Pyrolyzed bacterial cellulose-supported SnO2 nanocomposites as high-capacity anode materials for sodium-ion batteries

  • Burcu Dursun
  • Taner Sar
  • Ali Ata
  • Mathieu Morcrette
  • Meltem Yesilcimen AkbasEmail author
  • Rezan Demir-CakanEmail author
Original Paper


Room-temperature sodium-based batteries have the potential for meeting large-scale grid energy storage needs. Inspired by the advancement of the design and building of electrode materials in lithium ion batteries, improved nano-architectured electrodes can be created for sodium-ion batteries, allowing increased electron transport kinetics and conductivities. Here, nanocomposites with 3D porous structures are reported as a high-capacity anode material for sodium-ion batteries by using an easy, low-cost and environmentally friendly synthesis of pyrolyzed bacterial celluloses (PBCs). Bacterial celluloses (BCs) produced by the Gluconacetobacter xylinus strain are pyrolyzed at 500, 750 and 1000 °C, resulting 50, 130 and 110 mAh g−1 capacities over 80 numbers of cycles, respectively, in the presence of the binary ethylene carbonate–propylene carbonate mixture. In order to increase the cell performances, in situ coated SnO2 nanoparticles with bacterial cellulose (SnO2@PBC) are produced by addition as synthesized 5-nm-sized SnO2 nanoparticles into the BC growth medium together with the G. xylinus strain. Following the pyrolysis at 500 °C, the SnO2@PBC composite is better able to handle the accommodation of the dramatic volume change of the incorporated SnO2 nanoparticles because of the interaction of oxygen-containing moieties of bacterial cellulose nanofibrils with the SnO2 nanoparticles during cellulose production. The resulting SnO2@PBC composite presents highly stable capacity retention of around 400 mAh g−1 capacities at C/10 current density over 50 numbers of cycles.


Pyrolyzed bacterial cellulose Carbon SnO2 Anode Sodium-ion batteries 



The authors appreciate the funding from The Scientific and Technological Research Council of Turkey (TUBITAK contract no. 115M390) and the joint research project between CNRS-TUBITAK (TUBITAK Contract No. 214M272). The Gluconacetobacter xylinus strain was a kind gifted from Dr. Cheng Kang Lee (National Taiwan University of Science and Technology, Taiwan). We acknowledge Alice Cassel for the TEM and Ahmet Nazim for the SEM microstructural analyses. Sylvie Grugeon is thanked for helping with the Raman spectroscopy measurements.

Compliance with ethicals standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10570_2016_966_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1048 kb)


  1. Alcántara R, Lavela P, Ortiz GF, Tirado JL (2005) Carbon microspheres obtained from resorcinol–formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid State Lett 8:A222. doi: 10.1149/1.1870612 CrossRefGoogle Scholar
  2. Antonietti M, Thomas A, Titirici M (2007a) Back in black. J Mater Chem 17:T45–T45CrossRefGoogle Scholar
  3. Antonietti M, Thomas A, Titirici M (2007b) Back in black. Lab Chip 7:T45–T45Google Scholar
  4. Barud HS et al (2008) Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C 28:515–518CrossRefGoogle Scholar
  5. Barud HS, Regiani T, Marques RF, Lustri WR, Messaddeq Y, Ribeiro SJ (2011) Antimicrobial bacterial cellulose–silver nanoparticles composite membranes. J Nanomater 2011:10CrossRefGoogle Scholar
  6. Cao Y et al (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787. doi: 10.1021/nl3016957 CrossRefGoogle Scholar
  7. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRefGoogle Scholar
  8. Falco C, Marco-Lozar JP, Salinas-Torres D, Morallon E, Cazorla-Amoros D, Titirici MM, Lozano-Castello D (2013) Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature. Carbon 62:346–355. doi: 10.1016/j.carbon.2013.06.017 CrossRefGoogle Scholar
  9. Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87:1026–1037CrossRefGoogle Scholar
  10. Hu L, Liu N, Eskilsson M, Zheng G, McDonough J, Wågberg L, Cui Y (2013) Silicon-conductive nanopaper for Li-ion batteries. Nano Energy 2:138–145CrossRefGoogle Scholar
  11. Huidobro A, Pastor AC, Rodríguez-Reinoso F (2001) Preparation of activated carbon cloth from viscous rayon: part IV. Chem Act Carbon 39:389–398. doi: 10.1016/S0008-6223(00)00131-7 CrossRefGoogle Scholar
  12. Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chem 53:10169–10173. doi: 10.1002/anie.201403734 CrossRefGoogle Scholar
  13. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106. doi: 10.1016/S0141-3910(97)00197-3 CrossRefGoogle Scholar
  14. Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721. doi: 10.1002/aenm.201200026 CrossRefGoogle Scholar
  15. Klijanienko A, Lorenc-Grabowska E, Gryglewicz G (2008) Development of mesoporosity during phosphoric acid activation of wood in steam atmosphere. Bioresour Technol 99:7208–7214CrossRefGoogle Scholar
  16. Komaba S, Itabashi T, Kaplan B, Groult H, Kumagai N (2003) Enhancement of Li-ion battery performance of graphite anode by sodium ion as an electrolyte additive. Electrochem Commun 5:962–966. doi: 10.1016/j.elecom.2003.09.003 CrossRefGoogle Scholar
  17. Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y (2011a) Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl Mater Interfaces 3:4165–4168. doi: 10.1021/am200973k CrossRefGoogle Scholar
  18. Komaba S et al (2011b) Electrochemical na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867. doi: 10.1002/adfm.201100854 CrossRefGoogle Scholar
  19. Kubo S, White RJ, Tauer K, Titirici M-M (2013) Flexible coral-like carbon nanoarchitectures via a dual block copolymer-latex templating approach. Chem Mater 25:4781–4790. doi: 10.1021/cm4029676 CrossRefGoogle Scholar
  20. Lee K-Y, Qian H, Tay FH, Blaker JJ, Kazarian SG, Bismarck A (2013) Bacterial cellulose as source for activated nanosized carbon for electric double layer capacitors. J Mater Sci 48:367–376CrossRefGoogle Scholar
  21. Leijonmarck S, Cornell A, Lindbergh G, Wågberg L (2013) Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J Mater Chem A 1:4671–4677CrossRefGoogle Scholar
  22. Li X, Han C, Chen X, Shi C (2010) Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes. Microporous Mesoporous Mater 131:303–309CrossRefGoogle Scholar
  23. Nge TT, Nogi M, Yano H, Sugiyama J (2010) Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose 17:349–363CrossRefGoogle Scholar
  24. Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9:3635–3639CrossRefGoogle Scholar
  25. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884. doi: 10.1039/c2ee02781j CrossRefGoogle Scholar
  26. Park J et al (2014) Charge–discharge properties of tin dioxide for sodium-ion battery. Mater Res Bull 58:186–189. doi: 10.1016/j.materresbull.2014.04.051 CrossRefGoogle Scholar
  27. Phan NH, Rio S, Faur C, Le Coq L, Le Cloirec P, Nguyen TH (2006) Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications. Carbon 44:2569–2577. doi: 10.1016/j.carbon.2006.05.048 CrossRefGoogle Scholar
  28. Ponrouch A, Marchante E, Courty M, Tarascon J-M, Palacín MR (2012) In search of an optimized electrolyte for Na-ion batteries. Energy Environ Sci 5:8572. doi: 10.1039/c2ee22258b CrossRefGoogle Scholar
  29. Ponrouch A, Goñi AR, Palacín MR (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27:85–88. doi: 10.1016/j.elecom.2012.10.038 CrossRefGoogle Scholar
  30. Sangster J (2007) C–Na (carbon–sodium) system. J Phase Equilib Diffus 28:571–579. doi: 10.1007/s11669-007-9194-7 CrossRefGoogle Scholar
  31. Senguttuvan P, Rousse G, Seznec V, Tarascon J-M, Palacín MR (2011) Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 23:4109–4111. doi: 10.1021/cm202076g CrossRefGoogle Scholar
  32. Sevilla M, Falco C, Titirici M-M, Fuertes AB (2012) High-performance CO2 sorbents from algae. RSC Adv 2:12792–12797. doi: 10.1039/c2ra22552b CrossRefGoogle Scholar
  33. Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598CrossRefGoogle Scholar
  34. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8CrossRefGoogle Scholar
  35. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958. doi: 10.1002/adfm.201200691 CrossRefGoogle Scholar
  36. Soorholtz M, White RJ, Zimmermann T, Titirici M-M, Antonietti M, Palkovits R, Schueth F (2013) Direct methane oxidation over Pt-modified nitrogen-doped carbons. Chem Commun 49:240–242. doi: 10.1039/c2cc36232e CrossRefGoogle Scholar
  37. Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148:A803–A811. doi: 10.1149/1.1379565 CrossRefGoogle Scholar
  38. Su D, Ahn HJ, Wang G (2013) SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem Commun 49:3131–3133. doi: 10.1039/c3cc40448j CrossRefGoogle Scholar
  39. Tan I, Ahmad A, Hameed B (2008) Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. J Hazard Mater 153:709–717CrossRefGoogle Scholar
  40. Tang K, Fu L, White RJ, Yu L, Titirici M-M, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877. doi: 10.1002/aenm.201100691 CrossRefGoogle Scholar
  41. Wang B et al (2013a) Pyrolyzed bacterial cellulose: a versatile support for lithium ion battery anode materials. Small 9:2399–2404. doi: 10.1002/smll.201300692 CrossRefGoogle Scholar
  42. Wang Y, Su D, Wang C, Wang G (2013b) SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem Commun 29:8–11. doi: 10.1016/j.elecom.2013.01.001 CrossRefGoogle Scholar
  43. Wang Y-X et al (2014) Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J Mater Chem A 2:529. doi: 10.1039/c3ta13592f CrossRefGoogle Scholar
  44. Wenzel S, Hara T, Janek J, Adelhelm P (2011) Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ Sci 4:3342. doi: 10.1039/c1ee01744f CrossRefGoogle Scholar
  45. Wu J et al (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771CrossRefGoogle Scholar
  46. Xia X, Dahn JR (2012) Study of the reactivity of Na/Hard carbon with different solvents and electrolytes. J Electrochem Soc 159:A515. doi: 10.1149/2.jes111637 CrossRefGoogle Scholar
  47. Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T (2011) Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett 2:2560–2565. doi: 10.1021/jz2012066 CrossRefGoogle Scholar
  48. Yu L, Cai D, Wang H, Titirici M-M (2013) Hydrothermal synthesis of SnO2 and SnO2@C nanorods and their application as anode materials in lithium-ion batteries. RSC Advances 3:17281. doi: 10.1039/c3ra42900h CrossRefGoogle Scholar
  49. Zhang X, Fang Y, Chen W (2013) Preparation of silver/bacterial cellulose composite membrane and study on its antimicrobial activity. Synth React Inorg Met Org Nano Met Chem 43:907–913CrossRefGoogle Scholar
  50. Zhao J et al (2013) Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries. J Power Sources 244:752–757. doi: 10.1016/j.jpowsour.2013.06.109 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Burcu Dursun
    • 1
  • Taner Sar
    • 2
  • Ali Ata
    • 1
  • Mathieu Morcrette
    • 4
  • Meltem Yesilcimen Akbas
    • 2
    • 3
    Email author
  • Rezan Demir-Cakan
    • 5
    Email author
  1. 1.Department of Material Science and EngineeringGebze Technical UniversityGebzeTurkey
  2. 2.Department of Molecular Biology and GeneticsGebze Technical UniversityGebzeTurkey
  3. 3.Institute of BiotechnologyGebze Technical UniversityGebzeTurkey
  4. 4.Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314Université de Picardie Jules VerneAmiensFrance
  5. 5.Department of Chemical EngineeringGebze Technical UniversityGebzeTurkey

Personalised recommendations