, Volume 23, Issue 4, pp 2389–2407 | Cite as

Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis

  • Haishun Du
  • Chao Liu
  • Xindong Mu
  • Wenbo Gong
  • Dong Lv
  • Yimei Hong
  • Chuanling Si
  • Bin Li
Original Paper


Cellulose nanocrystals (CNCs) can be used as building blocks for the production of many renewable and sustainable nanomaterials. In this work, CNCs were produced from bleached eucalyptus kraft pulp with a high yield over 75 % via FeCl3-catalyzed formic acid (FA) hydrolysis process. It was found that the particle size of resultant CNC products (F-CNC) decreased with the increase of FeCl3 dosage in FA hydrolysis, and a maximum crystallinity index of about 75 % could be achieved when the dose of FeCl3 was 0.015 M (i.e. about 7 % based on the weight of starting material). Thermogravimetric analyses revealed that F-CNC exhibited a much higher thermal stability (the decomposition temperature was over 260 °C) than S-CNC prepared by typical sulfuric acid hydrolysis. In the FeCl3-catalyzed FA hydrolysis process, FA could be easily recovered and reused, and FeCl3 could be transferred to Fe(OH)3 as a high value-added product. Thus, the FeCl3-catalyzed FA hydrolysis process could be sustainable and economically feasible. In addition, F-CNC could be well dispersed in DMSO and its dispersibility in water could be improved by a cationic surface modification.


Cellulose nanocrystals (CNCs) Formic acid hydrolysis FeCl3 catalysis Cationic modification Renewable resources 



This work was supported by the National Natural Science foundation of China (Grant No. 21306216, Grant No. 31170541, Grant No. 31470609, and Grant No. 21433001), the Natural Science Foundation of Tianjin City (Grant No. 13JCZDJC29400, Grant No. 13JCZDJC33700), and Shandong Provincial Natural Science Foundation for Distinguished Young Scholar (China) (Grant No. JQ201305).


  1. Adharvanachari M, Syamasundar K (2005) Polymer (PVP) supported ferric chloride: an efficient and recyclable heterogeneous catalyst for high yield synthesis of 1,5-benzodiazepine derivatives under solvent free conditions and microwave irradiation. Catal Commun 6:67–70. doi: 10.1016/j.catcom.2004.10.009 CrossRefGoogle Scholar
  2. Biyani MV, Foster EJ, Weder C (2013) Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals. ACS Macro Lett 2:236–240. doi: 10.1021/mz400059w CrossRefGoogle Scholar
  3. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169. doi: 10.1016/j.carbpol.2013.01.033 CrossRefGoogle Scholar
  4. Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223–1230. doi: 10.1021/bm400219u CrossRefGoogle Scholar
  5. Cao Y et al (2015) Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth. Carbohydr Polym 131:152–158. doi: 10.1016/j.carbpol.2015.05.063 CrossRefGoogle Scholar
  6. Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762. doi: 10.1007/s10570-015-0615-1 CrossRefGoogle Scholar
  7. Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342. doi: 10.1039/b611568c CrossRefGoogle Scholar
  8. de Castro DO, Frollini E, Ruvolo-Filho A, Dufresne A (2015) “Green polyethylene” and curaua cellulose nanocrystal based nanocomposites: effect of vegetable oils as coupling agent and processing technique. J Polym Sci Pol Phys 53:1010–1019. doi: 10.1002/polb.23729 CrossRefGoogle Scholar
  9. de Oliveira Taipina M, Ferrarezi MMF, Yoshida IVP, Gonçalves MdC (2012) Surface modification of cotton nanocrystals with a silane agent. Cellulose 20:217–226. doi: 10.1007/s10570-012-9820-3 Google Scholar
  10. Demarchis L, Sordello F, Minella M, Minero C (2015) Tailored properties of hematite particles with different size and shape. Dyes Pigments 115:204–210. doi: 10.1016/j.dyepig.2014.11.024 CrossRefGoogle Scholar
  11. Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15:2327–2346. doi: 10.1021/bm500524s CrossRefGoogle Scholar
  12. Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8:287–298. doi: 10.2217/nnm.12.211 CrossRefGoogle Scholar
  13. Eyholzer C, Tingaut P, Zimmermann T, Oksman K (2012) Dispersion and reinforcing potential of carboxymethylated nanofibrillated cellulose powders modified with 1-Hexanol in extruded poly(lactic acid) (PLA) composites. J Polym Environ 20:1052–1062. doi: 10.1007/s10924-012-0508-4 CrossRefGoogle Scholar
  14. Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour Technol 100:2259–2264. doi: 10.1016/j.biortech.2008.09.062 CrossRefGoogle Scholar
  15. Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11:1808–1814. doi: 10.1039/B915746H CrossRefGoogle Scholar
  16. Fortunati E et al (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605. doi: 10.1016/j.carbpol.2011.09.066 CrossRefGoogle Scholar
  17. Gong W, Liu C, Mu X, Du H, Lv D, Li B, Han S (2015) Hydrogen peroxide-assisted sodium carbonate Pretreatment for the Enhancement of Enzymatic Saccharification of Corn Stover. ACS Sustain Chem Eng. doi: 10.1021/acssuschemeng.5b01278 Google Scholar
  18. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. doi: 10.1039/c3cs60204d CrossRefGoogle Scholar
  19. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi: 10.1021/cr900339w CrossRefGoogle Scholar
  20. Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238. doi: 10.1039/b806789a CrossRefGoogle Scholar
  21. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576. doi: 10.1021/bm900520n CrossRefGoogle Scholar
  22. Jack RS, Ayoko GA, Adebajo MO, Frost RL (2015) A review of iron species for visible-light photocatalytic water purification. Environ Sci Pollut Res Int 22:7439–7449. doi: 10.1007/s11356-015-4346-5 CrossRefGoogle Scholar
  23. Jasmani L, Eyley S, Wallbridge R, Thielemans W (2013) A facile one-pot route to cationic cellulose nanocrystals. Nanoscale 5:10207–10211. doi: 10.1039/c3nr03456a CrossRefGoogle Scholar
  24. Jiang F, Hsieh YL (2014) Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol. ACS Appl Mater Interfaces 6:20075–20084. doi: 10.1021/am505626a CrossRefGoogle Scholar
  25. Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969. doi: 10.1007/s10570-015-0551-0 CrossRefGoogle Scholar
  26. Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci. doi: 10.1002/app.41719 Google Scholar
  27. Fan J-S, Y-h Li (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohydr Polym 88:1184–1188. doi: 10.1016/j.carbpol.2012.01.081 CrossRefGoogle Scholar
  28. Kabel MA, Bos G, Zeevalking J, Voragen AG, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98:2034–2042. doi: 10.1016/j.biortech.2006.08.006 CrossRefGoogle Scholar
  29. Kamireddy SR, Li J, Tucker M, Degenstein J, Ji Y (2013) Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn Stover. Ind Eng Chem Res 52:1775–1782. doi: 10.1021/ie3019609 CrossRefGoogle Scholar
  30. Leung AC, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JH (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305. doi: 10.1002/smll.201001715 CrossRefGoogle Scholar
  31. Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules 12:650–659. doi: 10.1021/bm101315y CrossRefGoogle Scholar
  32. Li B, Mou H, Li Y, Ni Y (2013a) Synthesis and thermal decomposition behavior of zircoaluminate coupling agents. Ind Eng Chem Res 52:11980–11987. doi: 10.1021/ie400888p CrossRefGoogle Scholar
  33. Li F, Biagioni P, Bollani M, Maccagnan A, Piergiovanni L (2013b) Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20:2491–2504. doi: 10.1007/s10570-013-0015-3 CrossRefGoogle Scholar
  34. Li J, Xiu H, Zhang M, Wang H, Ren Y, Ji Y (2013c) Enhancement of cellulose acid hydrolysis selectivity using metal ion catalysts. Curr Org Chem 17:1617–1623CrossRefGoogle Scholar
  35. Li Y, Li G, Zou Y, Zhou Q, Lian X (2013d) Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose 21:301–309. doi: 10.1007/s10570-013-0146-6 CrossRefGoogle Scholar
  36. Li J, Zhang X, Zhang M, Xiu H, He H (2014) Optimization of selective acid hydrolysis of cellulose for microcrystalline cellulose using FeCl3. Bioresources 9:1334–1345Google Scholar
  37. Li B et al (2015a) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydr Polym 133:605–612. doi: 10.1016/j.carbpol.2015.07.033 CrossRefGoogle Scholar
  38. Li J, Zhang X, Zhang M, Xiu H, He H (2015b) Ultrasonic enhance acid hydrolysis selectivity of cellulose with HCl-FeCl3 as catalyst. Carbohydr Polym 117:917–922. doi: 10.1016/j.carbpol.2014.10.028 CrossRefGoogle Scholar
  39. Liu C, Wyman CE (2006) The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180 degrees C. Carbohydr Res 341:2550–2556. doi: 10.1016/j.carres.2006.07.017 CrossRefGoogle Scholar
  40. Liu Z-T, Yang Y, Zhang L, Liu Z-W, Xiong H (2007) Study on the cationic modification and dyeing of ramie fiber. Cellulose 14:337–345. doi: 10.1007/s10570-007-9117-0 CrossRefGoogle Scholar
  41. Liu L, Sun J, Li M, Wang S, Pei H, Zhang J (2009) Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 100:5853–5858. doi: 10.1016/j.biortech.2009.06.040 CrossRefGoogle Scholar
  42. Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr Polym 110:415–422. doi: 10.1016/j.carbpol.2014.04.040 CrossRefGoogle Scholar
  43. Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. doi: 10.1016/j.carbpol.2010.04.073 CrossRefGoogle Scholar
  44. Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573. doi: 10.1016/j.carbpol.2011.08.022 CrossRefGoogle Scholar
  45. Lu Q, Tang L, Lin F, Wang S, Chen Y, Chen X, Huang B (2014) Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis. Cellulose 21:3497–3506. doi: 10.1007/s10570-014-0376-2 CrossRefGoogle Scholar
  46. Lyubimova O, Stoyanov SR, Gusarov S, Kovalenko A (2015) Electric interfacial layer of modified cellulose nanocrystals in aqueous electrolyte solution: predictions by the molecular theory of solvation. Langmuir 31:7106–7116CrossRefGoogle Scholar
  47. Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol 40:149–167. doi: 10.1016/j.tifs.2014.09.009 CrossRefGoogle Scholar
  48. Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents–a critical review. J Hazard Mater 142:1–53. doi: 10.1016/j.jhazmat.2007.01.006 CrossRefGoogle Scholar
  49. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi: 10.1039/c0cs00108b CrossRefGoogle Scholar
  50. Mou H, Li B, Fardim P (2014) Pretreatment of corn stover with the modified hydrotropic method to enhance enzymatic hydrolysis. Energy Fuel 28:4288–4293. doi: 10.1021/ef5001634 CrossRefGoogle Scholar
  51. Mueller S, Sapkota J, Nicharat A, Zimmermann T, Tingaut P, Weder C, Foster EJ (2015) Influence of the nanofiber dimensions on the properties of nanocellulose/poly(vinyl alcohol) aerogels. J Appl Polym Sci. doi: 10.1002/app.41740 Google Scholar
  52. Ng H-M, Sin LT, Tee T-T, Bee S-T, Hui D, Low C-Y, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos Part B Eng 75:176–200. doi: 10.1016/j.compositesb.2015.01.008 CrossRefGoogle Scholar
  53. Nicharat A, Sapkota J, Weder C, Foster EJ (2015) Melt processing of polyamide 12 and cellulose nanocrystals nanocomposites. J Appl Polym Sci. doi: 10.1002/app.42752 Google Scholar
  54. Ning N, Wang Z, Yao Y, Zhang L, Tian M (2015) Enhanced electromechanical performance of bio-based gelatin/glycerin dielectric elastomer by cellulose nanocrystals. Carbohydr Polym 130:262–267. doi: 10.1016/j.carbpol.2015.03.083 CrossRefGoogle Scholar
  55. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi: 10.1186/1754-6834-3-10 CrossRefGoogle Scholar
  56. Plackett DV, Letchford K, Jackson JK, Burt HM (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29:105–118CrossRefGoogle Scholar
  57. Ren L, Cao Q, Xie X (2012) Hydrolysis kinetics of microcrystalline cellulose catalyzed by Fe~(3+) and dilute hydrochloric acid. Chem Ind For Prod 32:117–122Google Scholar
  58. Sapkota J, Kumar S, Weder C, Foster EJ (2015) Influence of processing conditions on properties of poly (vinyl acetate)/cellulose nanocrystal nanocomposites. Macromol Mater Eng 300:562–571. doi: 10.1002/mame.201400313 CrossRefGoogle Scholar
  59. Schlesinger M, Hamad WY, MacLachlan MJ (2015) Optically tunable chiral nematic mesoporous cellulose films. Soft Matter 11:4686–4694. doi: 10.1039/c5sm00745c CrossRefGoogle Scholar
  60. Shateri Khalil-Abad M, Yazdanshenas ME, Nateghi MR (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16:1147–1157. doi: 10.1007/s10570-009-9351-8 CrossRefGoogle Scholar
  61. Shen Z, Jin C, Pei H, Shi J, Liu L, Sun J (2014) Pretreatment of corn stover with acidic electrolyzed water and FeCl3 leads to enhanced enzymatic hydrolysis. Cellulose 21:3383–3394. doi: 10.1007/s10570-014-0353-9 CrossRefGoogle Scholar
  62. Shi Z, Phillips GO, Yang G (2013) Nanocellulose electroconductive composites. Nanoscale 5:3194–3201. doi: 10.1039/c3nr00408b CrossRefGoogle Scholar
  63. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432. doi: 10.1021/bm801193d CrossRefGoogle Scholar
  64. Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158. doi: 10.1007/s10570-010-9449-z CrossRefGoogle Scholar
  65. Song J, Tang A, Liu T, Wang J (2013) Fast and continuous preparation of high polymerization degree cellulose nanofibrils and their three-dimensional macroporous scaffold fabrication. Nanoscale 5:2482–2490. doi: 10.1039/c3nr33615h CrossRefGoogle Scholar
  66. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443. doi: 10.1038/nrg2336 (Retracted article. See vol 11, p 308, 2010) CrossRefGoogle Scholar
  67. Sun Y, Lin L (2010) Hydrolysis behavior of bamboo fiber in formic acid reaction system. J Agric Food Chem 58:2253–2259. doi: 10.1021/jf903731s CrossRefGoogle Scholar
  68. Sun Y, Lin L, Deng H, Li J, He B, Sun R, Ouyang P (2008) Structural changes of bamboo cellulose in formic acid. Bioresources 3:297–315Google Scholar
  69. Tang Y, Yang S, Zhang N, Zhang J (2013) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21:335–346. doi: 10.1007/s10570-013-0158-2 CrossRefGoogle Scholar
  70. Tang Y, He Z, Mosseler JA, Ni Y (2014) Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose 21:4569–4581. doi: 10.1007/s10570-014-0418-9 CrossRefGoogle Scholar
  71. Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366. doi: 10.1016/j.carbpol.2015.02.063 CrossRefGoogle Scholar
  72. Therien-Aubin H, Lukach A, Pitch N, Kumacheva E (2015) Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles. Nanoscale 7:6612–6618. doi: 10.1039/c5nr00660k CrossRefGoogle Scholar
  73. Wang Q, Zhao X, Zhu JY (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53:11007–11014. doi: 10.1021/ie501672m CrossRefGoogle Scholar
  74. Xie K, Hou A, Sun Y (2007) Chemical and morphological structures of modified novel cellulose with triazine derivatives containing cationic and anionic groups. Carbohydr Polym 70:285–290. doi: 10.1016/j.carbpol.2007.04.005 CrossRefGoogle Scholar
  75. Yang J, Han CR, Xu F, Sun RC (2014) Simple approach to reinforce hydrogels with cellulose nanocrystals. Nanoscale 6:5934–5943. doi: 10.1039/c4nr01214c CrossRefGoogle Scholar
  76. Yang X, Shi K, Zhitomirsky I, Cranston ED (2015) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater. doi: 10.1002/adma.201502284 Google Scholar
  77. Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93 % through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem 1:3938. doi: 10.1039/c3ta01150j CrossRefGoogle Scholar
  78. Zaman M, Xiao H, Chibante F, Ni Y (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89:163–170. doi: 10.1016/j.carbpol.2012.02.066 CrossRefGoogle Scholar
  79. Zhang Y, Li M, Zhang Q (2015) Silicon-modified ferric hydroxide for catalytic ozonation of nitrobenzene in aqueous solution. Desalin Water Treat 54:2902–2908. doi: 10.1080/19443994.2014.905979 CrossRefGoogle Scholar
  80. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600. doi: 10.1126/science.1141199 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Pulp and Paper, College of Papermaking Science and TechnologyTianjin University of Science and TechnologyTianjinChina
  2. 2.CAS Key Laboratory of Bio-based Material, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  3. 3.School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghaiChina

Personalised recommendations