Advertisement

Cellulose

, Volume 23, Issue 2, pp 1061–1072 | Cite as

The influence of different parameters on the mercerisation of cellulose for viscose production

  • Diana Carolina Albán Reyes
  • Nils Skoglund
  • Anna Svedberg
  • Bertil Eliasson
  • Ola SundmanEmail author
Original Paper

Abstract

A quantitative analysis of degree of transformation from a softwood sulphite dissolving pulp to alkalised material and the yield of this transformation as a function of the simultaneous variation of the NaOH concentration, denoted [NaOH], reaction time and temperature was performed. Samples were analysed with Raman spectroscopy in combination with multivariate data analysis and these results were confirmed by X-ray diffraction. Gravimetry was used to measure the yield. The resulting data were related to the processing conditions in a Partial Least Square regression model, which made it possible to explore the relevance of the three studied variables on the responses. The detailed predictions for the interactive effects of the measured parameters made it possible to determine optimal conditions for both yield and degree of transformation in viscose manufacturing. The yield was positively correlated to the temperature from room temperature up to 45 °C, after which the relation was negative. Temperature was found to be important for the degree of transformation and yield. The time to reach a certain degree of transformation (i.e. mercerisation) depended on both temperature and [NaOH]. At low temperatures and high [NaOH], mercerisation was instantaneous. It was concluded that the size of fibre particles (mesh range 0.25–1 mm) had no influence on degree of transformation in viscose processing conditions, apparently due to the quick reaction with the excess of NaOH.

Keywords

Mercerisation Cellulose I Cellulose II Raman spectroscopy X-ray diffraction patterns Multivariate data analysis 

Notes

Acknowledgments

Industrial Doctoral School at Umeå University, Domsjö Fabriker AB, AkzoNobel Functional Chemicals AB, Bio4Energy and The Royal Swedish Academy of Agriculture and Forestry are all acknowledged for financial support. András Gorzsas at the Vibrational Spectroscopy platform at KBC (Umeå University) is acknowledged for experimental guidance and help.

Supplementary material

10570_2016_879_MOESM1_ESM.pdf (512 kb)
Supplementary material 1 (PDF 512 kb)

References

  1. Atalla RH (1975) Raman spectral studies of polymorphy in cellulose. Part 1, celluloses I and II. IPC Technical paper series no. 19. The institute of paper chemistry, Appleton, Wisconsin, USAGoogle Scholar
  2. Borysiak S, Garbarczyk J (2003) Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerisation. Fibres Text East Eur 11(5):104–106Google Scholar
  3. DIFFRAC.EVA 3.2 (2014) Bruker AXS GmbH. Karlsruhe, GermanyGoogle Scholar
  4. Diffracplus TOPAS 4.2 (2009) Bruker AXS GmbH. Karlsruhe, GermanyGoogle Scholar
  5. Eriksson L, Johansson E, Kettaneh-Wold N, Wikström C, Wold S (2008) Design of experiments: principles and applications, 3rd edn. Umetrics Academy, UmeåGoogle Scholar
  6. Eriksson L, Byrne T, Johansson E, Trygg J, Vikström C (2013) Multi-and megavariate data analysis: basic principles and applications, 3rd edn. Umetrics Academy, MalmöGoogle Scholar
  7. Felten J, Hall H, Jaumot J, Tauler R, de Juan A, Gorzsas A (2015) Vibrational spectroscopic image analysis of biological material using multivariate curve resolution-alternating least squares (MCR-ALS). Nat Protoc 10(2):217–240. doi: 10.1038/nprot.2015.008 CrossRefGoogle Scholar
  8. Fischer S, Schenzel K, Fischer K, Diepenbrock W (2005) Applications of FT Raman spectroscopy and micro spectroscopy characterizing cellulose and cellulosic biomaterials. Macromol Symp 223:41–56. doi: 10.1002/masy.200550503 CrossRefGoogle Scholar
  9. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896. doi: 10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  10. Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17. doi: 10.1016/0003-2670(86)80028-9 CrossRefGoogle Scholar
  11. Grand View Research I (2014) Cellulose fibers market analysis by application (Spun Yarn, Fabrics, Clothing and Other) and segment forecasts to 2020. http://www.grandviewresearch.com/industry-analysis/cellulose-fibers-market. Accessed 2 Apr 2015
  12. Hämmerle FM (2011) The cellulose gap. Lenzing Ber 89:12–21Google Scholar
  13. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2(2):410–416. doi: 10.1021/bm005612q CrossRefGoogle Scholar
  14. Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose I-beta and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12(6):551–562. doi: 10.1007/s10570-005-9006-3 CrossRefGoogle Scholar
  15. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, Jvd Streek, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Cryst 41:466–470CrossRefGoogle Scholar
  16. Mozdyniewicz DJ, Nieminen K, Sixta H (2013) Alkaline steeping of dissolving pulp. Part I: cellulose degradation kinetics. Cellulose 20(3):1437–1451. doi: 10.1007/s10570-013-9926-2 CrossRefGoogle Scholar
  17. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082. doi: 10.1021/ja0257319 CrossRefGoogle Scholar
  18. Novotny M, Nuur C (2013) The transformation of pulp and paper industries: the role of local networks and institutions. Int J Innov Reg Dev 5(1):41–57CrossRefGoogle Scholar
  19. Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30(1):325–332. doi: 10.1002/app.1985.070300128 CrossRefGoogle Scholar
  20. Porro F, Bedue O, Chanzy H, Heux L (2007) Solid-state C-13 NMR study of Na-cellulose complexes. Biomacromolecules 8(8):2586–2593. doi: 10.1021/bm0702657 CrossRefGoogle Scholar
  21. Schenzel K, Fischer S (2001) NIR FT Raman spectroscopy—a rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose 8(1):49–57. doi: 10.1023/a:1016616920539 CrossRefGoogle Scholar
  22. Schenzel K, Almlöf H, Germgård U (2009) Quantitative analysis of the transformation process of cellulose I–cellulose II using NIR FT Raman spectroscopy and chemometric methods. Cellulose 16(3):407–415. doi: 10.1007/s10570-009-9286-0 CrossRefGoogle Scholar
  23. Shen L, Worrell E, Patel MK (2010) Environmental impact assessment of man-made cellulose fibres. Resour Conserv Recycl 55(2):260–274. doi: 10.1016/j.resconrec.2010.10.001 CrossRefGoogle Scholar
  24. Sisson WA, Saner WR (1941) The effect of the temperature and the concentration of sodium hydroxide on the X-ray diffraction behavior of raw and of degraded cotton. J Phys Chem 45(5):717–730. doi: 10.1021/j150410a001 CrossRefGoogle Scholar
  25. Sixta H (2008) Pulp purification. In: Handbook of pulp. Wiley-VCH Verlag GmbH, pp 933–965. doi: 10.1002/9783527619887.ch8
  26. Sobue H, Kiessig H (1939) The cellulose-sodium hydroxide-water system as a function of the temperature. Z Phys Chem B 43:309–328CrossRefGoogle Scholar
  27. Suzuki M, Sakamoto R, Aoyagi T (1995) Rapid carbohydrate analysis of wood pulps by ion chromatography. Tappi J 78(7):174–177Google Scholar
  28. Syed HU, Nebamoh IP, Germgård U (2013) A comparison of cold and hot caustic extraction of a spruce dissolving sulfite pulp prior to final bleaching. Appita J 66(3):229–234Google Scholar
  29. Takahashi M, Takenaka H (1987) Transition from cellulose I family to cellulose II family. Polym J 19(7):855–861. doi: 10.1295/polymj.19.855 CrossRefGoogle Scholar
  30. Wiley JH, Atalla RH (1987) Band assignments in the Raman-spectra of celluloses. Carbohydr Res 160:113–129. doi: 10.1016/0008-6215(87)80306-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Diana Carolina Albán Reyes
    • 1
  • Nils Skoglund
    • 1
    • 2
  • Anna Svedberg
    • 3
  • Bertil Eliasson
    • 1
  • Ola Sundman
    • 1
    Email author
  1. 1.Department of ChemistryUmeå UniversityUmeåSweden
  2. 2.Department of Engineering Sciences and MathematicsLuleå University of TechnologyLuleåSweden
  3. 3.Domsjö Fabriker ABÖrnsköldsvikSweden

Personalised recommendations