, Volume 23, Issue 1, pp 901–913 | Cite as

Application of chemometric analysis to infrared spectroscopy for the identification of wood origin

  • Ara Carballo-Meilán
  • Adrian M. Goodman
  • Mark G. Baron
  • Jose Gonzalez-Rodriguez
Original Paper


In this study, the chemical characteristics of wood are used for plant taxonomic classification based on the current Angiosperm Phylogeny Group classification (APG III System) for the division, class and subclass of woody plants. Infrared spectra contain information about the molecular structure and intermolecular interactions among the components in wood, but the understanding of this information requires multivariate techniques for the analysis of highly dense data sets. This article is written with the purposes of specifying the chemical differences among taxonomic groups and predicting the taxa of unknown samples with a mathematical model. Principal component analysis, t test, stepwise discriminant analysis and linear discriminant analysis were some of the multivariate techniques chosen. A procedure to determine the division, class, subclass and order of unknown samples was built with promising implications for future applications of Fourier transform infrared spectroscopy in wood taxonomy classification.


Plant taxonomy classification Infrared spectroscopy Multivariate analysis Wood Angiosperm Gymnosperm 



This work was supported by Europracticum IV (Leonardo da Vinci Programme). We gratefully acknowledge the Consello Social from Universidade de Santiago de Compostela (Spain).


  1. Åkerholm M, Salmén L, Salme L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42(3):963–969. doi: 10.1016/S0032-3861(00)00434-1 CrossRefGoogle Scholar
  2. Anchukaitis KJ, Evans MN, Lange T, Smith DR, Leavitt SW, Schrag DP (2008) Consequences of a rapid cellulose extraction technique for oxygen isotope and radiocarbon analyses. Anal Chem 80(6):2035–2041. doi: 10.1016/j.gca.2004.01.006.Analytical CrossRefGoogle Scholar
  3. Barnett JR, Jeronimidis G (2003) Wood quality and its biological basis. Blackwell, Oxford, p 226Google Scholar
  4. Bjarnestad S, Dahlman O (2002) Chemical compositions of hardwood and softwood pulps employing photoacoustic fourier transform infrared spectroscopy in combination with partial least-squares analysis. Anal Chem 74(22):5851–5858. doi: 10.1021/ac025926z CrossRefGoogle Scholar
  5. Carballo-Meilan A, Goodman AM, Baron MG, Gonzalez-Rodriguez J (2014) A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales. Cellulose 21(1):261–273. doi: 10.1007/s10570-013-0093-2 CrossRefGoogle Scholar
  6. Chase MW, Reveal JL (2009) A phylogenetic classification of the land plants to accompany APG III. Bot J Linn Soc 161(2):122–127. doi: 10.1111/j.1095-8339.2009.01002.x CrossRefGoogle Scholar
  7. Chen J, Liu C, Chen Y, Chen Y, Chang PR (2008) Structural characterization and properties of starch/konjac glucomannan blend films. Carbohydr Polym 74(4):946–952. doi: 10.1016/j.carbpol.2008.05.021 CrossRefGoogle Scholar
  8. Chernick MR (2011) Bootstrap methods: a guide for practitioners and researchers. Wiley, Hoboken, NJ, p 400Google Scholar
  9. Christenhusz MJM, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW (2011) A new classification and linear sequence of extant gymnosperms. Phytotaxa 19:55–70. doi: 10.1093/pcp/pcs187 CrossRefGoogle Scholar
  10. Coates J (2000) Interpretation of infrared spectra, a practical approach. Encycl Anal Chem 10815–10837Google Scholar
  11. Ek M, Gellerstedt G, Henriksson G (2009) Wood chemistry and wood biotechnology. Walter de Gruyter, Berlin, p 308CrossRefGoogle Scholar
  12. Erdtman H (1963) Some aspects of chemotaxonomy. Chem Plant Taxon 89–125Google Scholar
  13. Gidman E, Goodacre R, Emmett B, Smith AR, Gwynn-Jones D (2003) Investigating plant–plant interference by metabolic fingerprinting. Phytochemistry 63(6):705–710. doi: 10.1016/S0031-9422(03)00288-7 CrossRefGoogle Scholar
  14. Gorgulu ST, Dogan M, Severcan F (2007) The characterization and differentiation of higher plants by Fourier transform infrared spectroscopy. Appl Spectrosc 61(3):300–308. doi: 10.1366/000370207780220903 CrossRefGoogle Scholar
  15. Hobro A, Kuligowski J, Döll M, Lendl B (2010) Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA). Anal Bioanal Chem 398(6):2713–2722. doi: 10.1007/s00216-010-4199-1 CrossRefGoogle Scholar
  16. Huang A, Zhou Q, Liu J, Fei B, Sun S (2008) Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy. J Mol Struct 883–884:160–166. doi: 10.1016/j.molstruc.2007.11.061 CrossRefGoogle Scholar
  17. Kacuráková M, Kauráková M, Capek P, Sasinkova V, Wellner N, Ebringerova A, Kac M (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43(2):195–203. doi: 10.1016/S0144-8617(00)00151-X CrossRefGoogle Scholar
  18. Kim SW, Ban SH, Chung HJ, Cho S, Choi PS, Yoo OJ, Liu JR (2004) Taxonomic discrimination of flowering plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep 23(4):246–250. doi: 10.1007/s00299-004-0811-1 CrossRefGoogle Scholar
  19. Klecka WR (1980) Discriminant analysis. Sage Publications, Beverly Hills, CA, p 71Google Scholar
  20. Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules. 6(5):2815–2821. doi: 10.1021/bm050288q CrossRefGoogle Scholar
  21. Larkin P (2011) Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier, Amsterdam, Boston, p 230Google Scholar
  22. Liang C, Marchessault R (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm. J Polym Sci 39(135):269–278. doi: 10.1002/pol.1959.1203913521 CrossRefGoogle Scholar
  23. Marchessault RH (1962) Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure Appl Chem 5(1–2):107–130. doi: 10.1351/pac196205010107 Google Scholar
  24. Marchessault RH, Liang CY (1962) The infrared spectra of crystalline polysaccharides. VIII. Xylans. J Polym Sci 59(168):357–378. doi: 10.1002/pol.1962.1205916813 CrossRefGoogle Scholar
  25. Marchessault RH, Pearson FG, Liang CY (1960) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. Biochim Biophys Acta 45:499–507CrossRefGoogle Scholar
  26. Martin JW (2007) Concise encyclopedia of the structure of materials. Elsevier, Amsterdam; Boston, p 512Google Scholar
  27. McCann MC, Bush M, Milioni D, Sado P, Stacey NJ, Catchpole G, Defernez M, Carpita NC, Hofte H, Ulvskov P, Wilson RH, Roberts K (2001) Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry 57(6):811–821. doi: 10.1016/S0031-9422(01)00144-3 CrossRefGoogle Scholar
  28. Mohebby B (2005) Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood. Int Biodeterior Biodegradation 55(4):247–251. doi: 10.1016/j.ibiod.2005.01.003 CrossRefGoogle Scholar
  29. Mohebby B (2008) Application of ATR infrared spectroscopy in wood acetylation. J Agric Sci 10:253–259Google Scholar
  30. Muruganantham S, Anbalagan G, Ramamurthy N (2009) FT-IR and SEM-EDS comparative analysis of medicinal plants, Eclipta Alba Hassk and Eclipta Prostrata Linn. Rom J Biophys 19(4):285–294Google Scholar
  31. Obst JR (1982) Guaiacyl and syringyl lignin composition in hardwood cell components. Holzforschung 36(3):143–152. doi: 10.1515/hfsg.1982.36.3.143 CrossRefGoogle Scholar
  32. Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71(12):1969–1975. doi: 10.1002/(SICI)1097-4628(19990321)71:12<1969:AID-APP6>3.3.CO;2-4 CrossRefGoogle Scholar
  33. Pandey KK, Vuorinen T (2008) Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym Degrad Stab 93(12):2138–2146. doi: 10.1016/j.polymdegradstab.2008.08.013 CrossRefGoogle Scholar
  34. Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2009) Introduction to spectroscopy. Brooks/Cole, Cengage Learning, Belmont, CA, p 727Google Scholar
  35. Rakotomalala R (2005) TANAGRA: un logiciel gratuit pour l’enseignement et la recherche, pp. in Actes de EGC’2005, RNTI-E-3, vol 2, pp. 697–702Google Scholar
  36. Rana R, Sciences F (2008) Correlation between anatomical/chemical wood properties and genetic markers as a means of wood certification. Nieders\”achsische Staats-und Universit\”atsbibliothek Göttingen. doi: 978-3-9811503-2-2Google Scholar
  37. Rana R, Langenfeld-Heyser R, Finkeldey R, Polle A (2009) FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci Technol 44(2):225–242. doi: 10.1007/s00226-009-0281-2 CrossRefGoogle Scholar
  38. Revanappa SB, Nandini CD, Salimath PV (2010) Structural characterisation of pentosans from hemicellulose B of wheat varieties with varying chapati-making quality. Food Chem 119(1):27–33. doi: 10.1016/j.foodchem.2009.04.064 CrossRefGoogle Scholar
  39. Rhoads CA, Painter P, Given P (1987) FTIR studies of the contributions of plant polymers to coal formation. Int J Coal Geol 8(1–2):69–83. doi: 10.1016/0166-5162(87)90023-1 CrossRefGoogle Scholar
  40. Sekkal M, Dincq V, Legrand P, Huvenne J (1995) Investigation of the glycosidic linkages in several oligosaccharides using FT-IR and FT Raman spectroscopies. J Mol Struct 349(95):349–352CrossRefGoogle Scholar
  41. Shen JB, Lu HF, Peng QF, Zheng JF, Tian YM (2008) FTIR spectra of Camellia sect. Oleifera, sect. Paracamellia, and sect. Camellia (Theaceae) with reference to their taxonomic significance. J Syst Evol 46(2):194–204. doi: 10.3724/SP.J.1002.2008.07125 Google Scholar
  42. Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds. Wiley, Hoboken, NJ, p 502Google Scholar
  43. Sjostrom E (1981) Wood chemistry: fundamentals and applications. Academic Press, New York, p 293Google Scholar
  44. Stewart D, Wilson HM, Hendra PJ, Morrison IM (1995) Fourier-transform infrared and Raman spectroscopic study of biochemical and chemical treatments of oak wood (Quercus rubra) and barley (Hordeum vulgare) straw. J Agric Food Chem 43(8):2219–2225. doi: 10.1021/jf00056a047 CrossRefGoogle Scholar
  45. Sudiyani Y, Tsujiyama S, Imamura Y, Takahashi M, Minato K, Kajita H, Sci W (1999) Chemical characteristics of surfaces of hardwood and softwood deteriorated by weathering. J Wood Sci 45(4):348–353CrossRefGoogle Scholar
  46. Takayama M (1997) Fourier transform Raman assignment of guaiacyl and syringyl marker bands for lignin determination. Spectrochim Acta A Mol Biomol Spectrosc 53(10):1621–1628. doi: 10.1016/S1386-1425(97)00100-5 CrossRefGoogle Scholar
  47. The Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121. doi: 10.1111/j.1095-8339.2009.00996.x CrossRefGoogle Scholar
  48. Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K, Fransson T (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27(5):562–567. doi: 10.1016/j.biotechadv.2009.04.010 CrossRefGoogle Scholar
  49. Zugenmaier P (2007) Crystalline cellulose and derivatives: characterization and structures. Springer, Berlin, New York, p 285Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ara Carballo-Meilán
    • 1
  • Adrian M. Goodman
    • 2
  • Mark G. Baron
    • 3
  • Jose Gonzalez-Rodriguez
    • 3
  1. 1.Department of Chemical EngineeringUniversity of LoughboroughLoughboroughUK
  2. 2.School of Life SciencesUniversity of LincolnLincolnUK
  3. 3.School of ChemistryUniversity of LincolnLincolnUK

Personalised recommendations