, Volume 23, Issue 1, pp 239–246 | Cite as

The use of methylcellulose for the synthesis of Li2FeSiO4/C composites

  • Miloš MilovićEmail author
  • Dragana Jugović
  • Miodrag Mitrić
  • Robert Dominko
  • Ivana Stojković-Simatović
  • Bojan Jokić
  • Dragan Uskoković
Original Paper


The key parameters related to cathode materials for commercial use are a high specific capacity, good cycling stability, capacity retention at high current rates, as well as the simplicity of the synthesis process. This study presents a facile synthesis of a composite cathode material, Li2FeSiO4 with carbon, under extreme conditions: rapid heating, short dwell at 750 °C and subsequent quenching. The water-soluble polymer methylcellulose was used both as an excellent dispersing agent and a carbon source that pyrolytically degrades to carbon, thereby enabling the homogeneous deployment of the precursor compounds and the control of the Li2FeSiO4 particle growth from the earliest stage of processing. X-ray powder diffraction reveals the formation of Li2FeSiO4 nanocrystallites with a monoclinic structure in the P21/n space group (#14). The composite’s electrochemical performance as a cathode material in Li-ion batteries was examined. The influence of the amount of methylcellulose on the microstructural, morphological, conductive, and electrochemical properties of the obtained powders has been discussed. It has been shown that the overall electrochemical performance is improved with an increase of carbon content, through both the decrease of the mean particle diameter and the increase of electrical conductivity.


Methylcellulose Lithium iron silicate (Li2FeSiO4Cathode materials Carbon composites Li-ion batteries 



The Ministry of Education, Science and Technological Development of the Republic of Serbia provided financial support for this study under Grants Nos. III 45004, III 45015, and III 45014, and the bilateral Project between the Republic of Slovenia and the Republic of Serbia No. 651-03-1251/2012-09/05.


  1. Cheary RW, Coelho A (1992) A fundamental parameters approach to X-ray line-profile fitting. J Appl Crystallogr 25:109–121CrossRefGoogle Scholar
  2. Chen W, Zhang J, Fang Q et al (2004) Sol–gel preparation of thick titania coatings aided by organic binder materials. Sens Actuators B Chem 100:195–199CrossRefGoogle Scholar
  3. Cyster LA, Grant DM, Howdle SM et al (2005) The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Biomaterials 26:697–702CrossRefGoogle Scholar
  4. Dominko R (2008) Li2MSiO4 (M=Fe and/or Mn) cathode materials. J Power Sources 184:462–468CrossRefGoogle Scholar
  5. Dominko R, Conte DE, Hanzel D et al (2008) Impact of synthesis conditions on the structure and performance of Li2FeSiO4. J Power Sources 178:842–847CrossRefGoogle Scholar
  6. Haque A, Morris ER (1993) Thermogelation of methylcellulose. Part I: molecular structures and processes. Carbohydr Polym 22:161–173CrossRefGoogle Scholar
  7. Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72CrossRefGoogle Scholar
  8. Hong L, Zhang Z (2013) Effect of carbon sources on the electrochemical performance of Li2FeSiO4 cathode materials for lithium ion batteries. Russ J Electrochem 49:386–390CrossRefGoogle Scholar
  9. Hotza D, Greil P (1995) Review: aqueous tape casting of ceramic powders. Mater Sci Eng A 202:206–217CrossRefGoogle Scholar
  10. Hribernik S, Smole MS, Kleinschek KS et al (2007) Flame retardant activity of SiO2-coated regenerated cellulose fibres. Polym Degrad Stab 92:1957–1965CrossRefGoogle Scholar
  11. Islam MS, Dominko R, Masquelier C et al (2011) Silicate cathodes for lithium batteries: alternatives to phosphates? J Mater Chem 21:9811–9818CrossRefGoogle Scholar
  12. Jabbour L, Bongiovanni R, Chaussy D et al (2013) Cellulose-based Li-ion batteries: a review. Cellulose 20:1523–1545CrossRefGoogle Scholar
  13. Jugović D, Mitrić M, Milović M et al (2013) Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method. Powder Technol 246:539–544CrossRefGoogle Scholar
  14. Jugović D, Milović M, Ivanovski VN et al (2014) Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy. J Power Sources 265:75–80CrossRefGoogle Scholar
  15. Kokalj A, Dominko R, Mali G et al (2007) Beyond one-electron reaction in Li cathode materials: designing Li2MnxFe1−xSiO4. Chem Mater 19:3633–3640CrossRefGoogle Scholar
  16. Kotobuki M, Mizuno Y, Munakata H, Kanamura K (2011) Improved performance of hydrothermally synthesized LiMnPO4 by Mg doping. Electrochemistry 79:467–469CrossRefGoogle Scholar
  17. Li Y, Guo Z, Hao J, Ren S (2008) Gelcasting of metal powders in nontoxic cellulose ethers system. J Mater Process Technol 208:457–462CrossRefGoogle Scholar
  18. Lin Y-C, Cho J, Tompsett GA et al (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097–20107CrossRefGoogle Scholar
  19. METHOCEL Cellulose Ethers (2002) Technical handbook. The Dow Chemical Company, MidlandGoogle Scholar
  20. Nytén A, Abouimrane A, Armand M et al (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7:156–160CrossRefGoogle Scholar
  21. Radlein D, Piskorz J, Scott DS (1991) Fast pyrolysis of natural polysaccharides as a potential industrial process. J Anal Appl Pyrolysis 19:41–63CrossRefGoogle Scholar
  22. Ravet N, Gauthier M, Zaghib K et al (2007) Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chem Mater 19:2595–2602CrossRefGoogle Scholar
  23. Richards GN, Zheng G (1991) Influence of metal ions and of salts on products from pyrolysis of wood: applications to thermochemical processing of newsprint and biomass. J Anal Appl Pyrolysis 21:133–146CrossRefGoogle Scholar
  24. Yue Z, McEwen IJ, Cowie JMG (2002) Ion conducting behaviour and morphology of solid polymer electrolytes based on a regioselectively substituted cellulose ether with PEO side chains. J Mater Chem 12:2281–2285CrossRefGoogle Scholar
  25. Zhang L-L, Peng G, Liang G et al (2013) Controllable synthesis of spherical Li3V2(PO4)3/C cathode material and its electrochemical performance. Electrochim Acta 90:433–439CrossRefGoogle Scholar
  26. Zuo P, Wang T, Cheng G et al (2012) Effects of carbon on the structure and electrochemical performance of Li2FeSiO4 cathode materials for lithium-ion batteries. RSC Adv 2:6994–6998CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Miloš Milović
    • 1
    Email author
  • Dragana Jugović
    • 1
  • Miodrag Mitrić
    • 2
  • Robert Dominko
    • 3
  • Ivana Stojković-Simatović
    • 4
  • Bojan Jokić
    • 5
  • Dragan Uskoković
    • 1
  1. 1.Institute of Technical Sciences of SASABelgradeSerbia
  2. 2.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  3. 3.National Institute of ChemistryLjubljanaSlovenia
  4. 4.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia
  5. 5.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations