Advertisement

Cellulose

, Volume 23, Issue 1, pp 529–543 | Cite as

Concentration driven cocrystallisation and percolation in all-cellulose nanocomposites

  • Denis Lourdin
  • Jorge Peixinho
  • Joël Bréard
  • Bernard Cathala
  • Eric Leroy
  • Benoît Duchemin
Original Paper

Abstract

All-cellulose nanocomposites reinforced by cellulose nanocrystals (CNC) were produced using a solvent consisting of 1-butyl-3-methylimidazolium chloride and dimethyl sulfoxide. Microcrystalline cellulose (MCC) was pre-dissolved at high temperature in the solvent. Freeze-dried CNC were then added to the slurry at room temperature, thereby avoiding complete CNC dissolution. Solid all-cellulose composite films were obtained by film casting, solvent exchange and drying. The MCC to CNC ratio was kept constant while the solvent content was incremented. The short-range and long-range cellulose–cellulose interactions in the solid materials were respectively assessed by Fourier-transform infrared spectroscopy and X-ray diffraction. The CNC used in this work contained both cellulose I and cellulose II. The cellulose concentration in the mixture drastically changed the overall crystallinity as well as the cellulose I to cellulose II ratio in the ACC. Cellulose II was formed by recrystallisation of the dissolved fractions. These fractions include the pre-dissolved MCC and the cellulose II portion of the CNC. Cocrystallisation with the cellulose I CNC acting as a template was also evidenced. This phenomenon was controlled by the initial solvent content. The correlation between the hygromechanical properties and the nanostructure features of the ACC was investigated by humidity-controlled dynamic mechanical analysis (RH-DMA). The introduction of the cocrystallisation and percolation concepts provided a thorough explanation for the humidity dependency of the storage modulus.

Keywords

Cellulose Ionic liquid Crystallization Confinement DMA 

Abbreviations

AFM

Atomic force microscopy

TEM

Transmission electron microscopy

FTIR

Fourier-transform infrared spectroscopy

WAXD

Wide-angle X-ray diffraction

RH-DMA

Humidity-controlled dynamic mechanical analysis

BmimCl

1-Butyl-3-methylimidazolium chloride

MCC

Microcrystalline cellulose

CNC

Cellulose nanocrystals

DMSO

Dimethyl sulfoxide

ACC

All-cellulose composites

RCF

Regenerated cellulose film

LOI

Lateral order index

TCI

Total crystallinity index

Notes

Acknowledgments

The authors would like to thank Emilie Perrin (BIA) for her help with the TEM. Financial support from the CNRS was provided through a PEPS grant (BioMIMCellwalL). BD would like to dedicate this article to the memory of the late Dr Roger H. Newman.

Supplementary material

10570_2015_805_MOESM1_ESM.doc (862 kb)
Supplementary material 1 (DOC 891 kb)

References

  1. Altaner CM, Horikawa Y, Sugiyama J, Jarvis MC (2014) Cellulose Iβ investigated by IR-spectroscopy at low temperatures. Cellulose 21:3171–3179. doi: 10.1007/s10570-014-0360-x CrossRefGoogle Scholar
  2. Boerstoel H (2006) Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns. University of Groningen. http://www.narcis.nl/publication/RecordID/oai:ub.rug.nl:dbi%2F43da2b779a30f
  3. Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf Physicochem Eng Asp 377:297–303. doi: 10.1016/j.colsurfa.2011.01.003 CrossRefGoogle Scholar
  4. Bras J (2004) Etudes des propriétés barrières de dérivés cellulosiques: application au gel de cellulose du papier sulfurisé. Toulouse, INPTGoogle Scholar
  5. Buleon A, Chanzy H (1980) Single crystals of cellulose IVII: preparation and properties. J Polym Sci Polym Phys Ed 18:1209–1217. doi: 10.1002/pol.1980.180180604 CrossRefGoogle Scholar
  6. Buleon A, Chanzy H, Roche E (1976) Epitaxial crystallization of cellulose II on valonia cellulose. J Polym Sci Polym Phys Ed 14:1913–1916. doi: 10.1002/pol.1976.180141016 CrossRefGoogle Scholar
  7. Buleon A, Chanzy H, Roche E (1977) Shish kebab-like structures of cellulose. J Polym Sci Polym Lett Ed 15:265–270. doi: 10.1002/pol.1977.130150502 CrossRefGoogle Scholar
  8. Capadona JR, Shanmuganathan K, Tyler DJ et al (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319:1370–1374. doi: 10.1126/science.1153307 CrossRefGoogle Scholar
  9. Carillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234CrossRefGoogle Scholar
  10. Cartier N, Escaffre P, Mathevet F, et al. (1994) Structure and recycling of vegetable parchment. Tappi J 77:95–100Google Scholar
  11. Courtenay W (1878) Improvement in processes of treating vegetable fibrous substances. US 217,448 AGoogle Scholar
  12. Duchemin B (2008) Structure, property and processing relationships of all-cellulose composites. Ph.D. Thesis, University of CanterburyGoogle Scholar
  13. Duchemin B, Newman R, Staiger M (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14:311–320CrossRefGoogle Scholar
  14. Duchemin BJC, Mathew AP, Oksman K (2009a) All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride. Compos Part Appl Sci Manuf 40:2031–2037. doi: 10.1016/j.compositesa.2009.09.013 CrossRefGoogle Scholar
  15. Duchemin BJC, Newman RH, Staiger MP (2009b) Structure–property relationship of all-cellulose composites. Compos Sci Technol 69:1225–1230CrossRefGoogle Scholar
  16. Duchemin BJC, Staiger MP, Tucker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221. doi: 10.1002/app.31111 CrossRefGoogle Scholar
  17. Duchemin B, Thuault A, Vicente A et al (2012) Ultrastructure of cellulose crystallites in flax textile fibres. Cellulose 19:1837–1854. doi: 10.1007/s10570-012-9786-1 CrossRefGoogle Scholar
  18. Fernandes AN, Thomas LH, Altaner CM et al (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203. doi: 10.1073/pnas.1108942108 CrossRefGoogle Scholar
  19. Fink H-P, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51. doi: 10.1007/s10570-013-0137-7 CrossRefGoogle Scholar
  20. Flandin L, Cavaillé JY, Bidan G, Brechet Y (2000) New nanocomposite materials made of an insulating matrix and conducting fillers: processing and properties. Polym Compos 21:165–174. doi: 10.1002/pc.10174 CrossRefGoogle Scholar
  21. Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 46:10221–10225CrossRefGoogle Scholar
  22. Goldberg RN, Schliesser J, Mittal A et al (2015) A thermodynamic investigation of the cellulose allomorphs: cellulose (am), cellulose Iβ (cr), cellulose II (cr), and cellulose III (cr). J Chem Thermodyn 81:184–226. doi: 10.1016/j.jct.2014.09.006 CrossRefGoogle Scholar
  23. Graenacher C (1934) Cellulose solution. US 1943176 AGoogle Scholar
  24. Haverhals LM, Reichert WM, Long HCD, Trulove PC (2010) Natural fiber welding. Macromol Mater Eng 295:425–430. doi: 10.1002/mame.201000005 CrossRefGoogle Scholar
  25. Haverhals LM, Sulpizio HM, Fayos ZA et al (2012) Process variables that control natural fiber welding: time, temperature, and amount of ionic liquid. Cellulose 19:13–22. doi: 10.1007/s10570-011-9605-0 CrossRefGoogle Scholar
  26. He X, Xiao Q, Lu C et al (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules 15:618–627. doi: 10.1021/bm401656a CrossRefGoogle Scholar
  27. Huber T, Müssig J, Curnow O et al (2012) A critical review of all-cellulose composites. J Mater Sci 47:1171–1186. doi: 10.1007/s10853-011-5774-3 CrossRefGoogle Scholar
  28. Hurtubise FG, Krassig H (1960) Classification of fine structural characteristics in cellulose by infared spectroscopy. Use of potassium bromide pellet technique. Anal Chem 32:177–181CrossRefGoogle Scholar
  29. Imai T, Sugiyama J (1998) Nanodomains of Iα and Iβ cellulose in algal microfibrils. Macromolecules 31:6275–6279CrossRefGoogle Scholar
  30. Isogai A (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 22:3168–3172CrossRefGoogle Scholar
  31. Kalka S, Huber T, Steinberg J et al (2014) Biodegradability of all-cellulose composite laminates. Compos Part Appl Sci Manuf 59:37–44. doi: 10.1016/j.compositesa.2013.12.012 CrossRefGoogle Scholar
  32. Koenig JL (1999) Spectroscopy of polymers. Elsevier, AmsterdamGoogle Scholar
  33. Kondo T, Sawatari C (1996) A fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37:393–399CrossRefGoogle Scholar
  34. Liebert TF (2010) Cellulose solvents-remarkable history, bright future. In: Liebert T, Heinz TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification, ACS symposium series, vol 1033. American Chemical Society, Washington, DC, pp 3–54Google Scholar
  35. Lu A, Hemraz U, Khalili Z, Boluk Y (2014) Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose 21:1239–1250. doi: 10.1007/s10570-014-0173-y CrossRefGoogle Scholar
  36. Ma H, Zhou B, Li H-S et al (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr Polym 84:383–389. doi: 10.1016/j.carbpol.2010.11.050 CrossRefGoogle Scholar
  37. Magalhães WLE, Cao X, Lucia LA (2009) Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies. Langmuir 25:13250–13257. doi: 10.1021/la901928j CrossRefGoogle Scholar
  38. Manabe S, Iwata M, Kamide K (1986) Dynamic mechanical absorptions observed for regenerated cellulose solids in the temperature range from 280 to 600 K. Polym J 18:1–14CrossRefGoogle Scholar
  39. Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRefGoogle Scholar
  40. Mazeau K (2015) The hygroscopic power of amorphous cellulose: a modeling study. Carbohydr Polym 117:585–591. doi: 10.1016/j.carbpol.2014.09.095 CrossRefGoogle Scholar
  41. Nelson ML, O’Connor RT (1964a) Relation of certain infrared bands to cellulose crystallinity and crystal lattice types. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341CrossRefGoogle Scholar
  42. Nelson ML, O’Connor RT (1964b) Relation of certain infrared bands to cellulose crystallinity and crystal lattice types. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRefGoogle Scholar
  43. Newman RH (2004) Carbon-13 NMR evidence for cocrystallisation of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52. doi: 10.1023/B:CELL.0000014768.28924.0c CrossRefGoogle Scholar
  44. Newman RH (2008) Simulation of X-ray diffractograms relevant to the purported polymorphs cellulose IVI and IVII. Cellulose 15:769–778. doi: 10.1007/s10570-008-9225-5 CrossRefGoogle Scholar
  45. Nishino T, Arimoto N (2005) All-cellulose composite by partial dissolving of fibers. StockholmGoogle Scholar
  46. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRefGoogle Scholar
  47. Nissan AH, Sternstein SS (1962) Cellulose as a viscoelastic material. Pure Appl Chem 5:131–146CrossRefGoogle Scholar
  48. O’Connor RT, DuPré EF, Mitcham D (1958) Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons. Text Res J 28:382–392. doi: 10.1177/004051755802800503 CrossRefGoogle Scholar
  49. Oh SY, Yoo DI, Shin Y et al (2005a) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRefGoogle Scholar
  50. Oh SY, Yoo DI, Shin Y, Seo G (2005b) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428CrossRefGoogle Scholar
  51. Olszewska AM, Kontturi E, Laine J, Österberg M (2013) All-cellulose multilayers: long nanofibrils assembled with short nanocrystals. Cellulose 20:1777–1789. doi: 10.1007/s10570-013-9949-8 CrossRefGoogle Scholar
  52. Ouajai S, Shanks RA (2009) Preparation, structure and mechanical properties of all-hemp cellulose biocomposites. Compos Sci Technol 69:2119–2126. doi: 10.1016/j.compscitech.2009.05.005 CrossRefGoogle Scholar
  53. Pinkert A, Marsh KN, Pang S, Staiger MP (2010) Ionic liquids and their interaction with cellulose. Chem Inform. doi: 10.1002/chin.201017232 Google Scholar
  54. Pullawan T, Wilkinson AN, Eichhorn SJ (2010) Discrimination of matrix–fibre interactions in all-cellulose nanocomposites. Compos Sci Technol 70:2325–2330. doi: 10.1016/j.compscitech.2010.09.013 CrossRefGoogle Scholar
  55. Pullawan T, Wilkinson AN, Eichhorn SJ (2012) Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites. Biomacromolecules 13:2528–2536CrossRefGoogle Scholar
  56. Pullawan T, Wilkinson AN, Eichhorn SJ (2013) Orientation and deformation of wet-stretched all-cellulose nanocomposites. J Mater Sci 48:7847–7855. doi: 10.1007/s10853-013-7404-8 CrossRefGoogle Scholar
  57. Pullawan T, Wilkinson AN, Zhang LN, Eichhorn SJ (2014) Deformation micromechanics of all-cellulose nanocomposites: comparing matrix and reinforcing components. Carbohydr Polym 100:31–39. doi: 10.1016/j.carbpol.2012.12.066 CrossRefGoogle Scholar
  58. Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10:1597–1602. doi: 10.1021/bm9001975 CrossRefGoogle Scholar
  59. Rinaldi R (2011) Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Commun 47:511. doi: 10.1039/c0cc02421j CrossRefGoogle Scholar
  60. Röder T, Moosbauer J, Kliba G et al (2009) Comparative characterisation of man-made regenerated cellulose fibres. Lenzing Ber 87:98–105Google Scholar
  61. Salmén NL, Back EL (1977) The influence of water on the glass transition temperature of cellulose. Tappi 60:137–140Google Scholar
  62. Schmidt A (1871) Improvement in treating paper and vegetable fibrous substances. US 113,454. Pittsburg, PAGoogle Scholar
  63. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRefGoogle Scholar
  64. Sèbe G, Ham-Pichavant F, Ibarboure E et al (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578. doi: 10.1021/bm201777j CrossRefGoogle Scholar
  65. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
  66. Smole MS, Peršin Z, Kreže T et al (2003) X-ray study of pre-treated regenerated cellulose fibres. Mat Res Innov 7:275–282CrossRefGoogle Scholar
  67. Song H, Niu Y, Yu J et al (2013) Preparation and morphology of different types of cellulose spherulites from concentrated cellulose ionic liquid solutions. Soft Matter 9:3013–3020. doi: 10.1039/C3SM27320B CrossRefGoogle Scholar
  68. Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos Sci Technol 68:2201–2207CrossRefGoogle Scholar
  69. Soykeabkaew N, Nishino T, Peijs T (2009a) All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos Part Appl Sci Manuf 40:321–328CrossRefGoogle Scholar
  70. Soykeabkaew N, Sian C, Gea S et al (2009b) All-cellulose nanocomposites by surface selective dissolution of bacterial. Cellulose 16:435–444. doi: 10.1007/s10570-009-9285-1 CrossRefGoogle Scholar
  71. Sukhov DA, Derkacheva O, Kazanskii SA (1998) Allomorphism of native celluloses by FTIR spectroscopy. In: 5th European workshop on lignocellulosics and pulp. Advances in lignocellulosics chemistry for ecologically friendly pulping and bleaching technologies. Aveiro, Portugal, pp 5–66Google Scholar
  72. Sundberg J, Toriz G, Gatenholm P (2013) Moisture induced plasticity of amorphous cellulose films from ionic liquid. Polymer 54:6555–6560. doi: 10.1016/j.polymer.2013.10.012 CrossRefGoogle Scholar
  73. Takahashi M, Ookubo M (1993) CP/MAS 13C NMR and WAXS studies on the effects of starting cellulose materials on transition between cellulose polymorphs. Kobunshi Ronbunshu 51:107–113CrossRefGoogle Scholar
  74. Takayanagi M, Uemura S, Minami S (1964) Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer. J Polym Sci Part C Polym Symp 5:113–122. doi: 10.1002/polc.5070050111 CrossRefGoogle Scholar
  75. Wang Y, Chen L (2010) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83:1937–1946. doi: 10.1016/j.carbpol.2010.10.071 CrossRefGoogle Scholar
  76. Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1: process optimization. J Appl Polym Sci 113:1270–1275. doi: 10.1002/app.30072 CrossRefGoogle Scholar
  77. Wang L, Gao L, Cheng B et al (2014) Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethyl sulfoxide. Carbohydr Polym 110:292–297. doi: 10.1016/j.carbpol.2014.03.091 CrossRefGoogle Scholar
  78. Zhou S, Tashiro K, Hongo T et al (2001) Influence of water on structure and mechanical properties of regenerated cellulose studied by an organized combination of infrared spectra, X-ray diffraction, and dynamic viscoelastic data measured as functions of temperature and humidity. Macromolecules 34:1274–1280. doi: 10.1021/ma001507x CrossRefGoogle Scholar
  79. Zhu S, Wu Y, Chen Q et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327CrossRefGoogle Scholar
  80. Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Denis Lourdin
    • 1
  • Jorge Peixinho
    • 2
  • Joël Bréard
    • 2
  • Bernard Cathala
    • 1
  • Eric Leroy
    • 3
  • Benoît Duchemin
    • 2
  1. 1.UR1268 Biopolymères Interactions AssemblagesINRANantesFrance
  2. 2.Laboratoire Ondes et Milieux Complexes, UMR 6294CNRS-Université du HavreLe HavreFrance
  3. 3.CNRS, GEPEA, UMR 6144, CRTTLUNAM UniversitéSt Nazaire CedexFrance

Personalised recommendations