, Volume 23, Issue 1, pp 93–123 | Cite as

Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review

  • Sinke H. OsongEmail author
  • Sven Norgren
  • Per Engstrand
Review Paper


As an emerging cellulosic nanomaterial, microfibrillated cellulose (MFC) and nanofibrillated cellulose (NFC) have shown enormous potential in the forest products industry. The forest products industry and academia are working together to realise the possibilities of commercializing MFC and NFC. However, there are still needs to improve the processing, characterisation and material properties of nanocellulose in order to realise its full potential. The annual number of research publications and patents on nanocellulose with respect to manufacturing, properties and applications is now up in the thousands, so it is of the utmost importance to review articles that endeavour to research on this explosive topic of cellulose nanomaterials. This review examines the past and current situation of wood-based MFC and NFC in relation to its processing and applications relating to papermaking.


Nanocellulose Microfibrillated cellulose Nanofibrillated cellulose Paper, films, coating 



This review article would not have been possible without the encouragement of Professor Herbert Sixta. Thank you for giving us the freedom to choose topics related to our research for the review manuscript. The financial support of the KK-Foundation and Mid Sweden University is gratefully acknowledged.


  1. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRefGoogle Scholar
  2. Abdul Khalil HPS, Davoudpour Y, Islam MdN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRefGoogle Scholar
  3. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278CrossRefGoogle Scholar
  4. Abitbol T, Marway H, Cranston E (2014) Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide. Nord Pulp Pap Res J 29(1):46–57CrossRefGoogle Scholar
  5. Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86(4):1468–1475CrossRefGoogle Scholar
  6. Agarwal U (2014) On the cellulose supramolecular structure in various cellulose-I CNCs. In: TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BCGoogle Scholar
  7. Ahola S, Turon X, Österberg M, Laine J, Rojas OJ (2008a) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24(20):11592–11599CrossRefGoogle Scholar
  8. Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008b) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9(4):1273–1282CrossRefGoogle Scholar
  9. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671CrossRefGoogle Scholar
  10. Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13(6):665–677CrossRefGoogle Scholar
  11. Ankerfors M (2012) Microfibrillated cellulose: energy-efficient preparation techniques and key properties. Licentiate thesis in pulp and paper chemistry and technology. Innventia and Royal Institute of Technology, StockholmGoogle Scholar
  12. Ankerfors M, Lindström T (2009) Method for providing nanocellulose involving modifying cellulose fibers. US patent application, 20110036522Google Scholar
  13. Ankerfors M, Duker E, Lindström T (2013a) Topo-chemical modification of fibres by grafting of carboxymethyl cellulose in pilot scale. Nord Pulp Pap Res J 28(1):6–14CrossRefGoogle Scholar
  14. Ankerfors M, Lindström T, Henriksson G (2013b) Method for the manufacture of microfibrillated cellulose. US patent no 8,546,558Google Scholar
  15. Aracri E, Vidal T, Ragauskas AJ (2011) Wet strength development in sisal cellulose fibers by effect of a laccase—TEMPO treatment. Carbohydr Polym 84(4):1384–1390CrossRefGoogle Scholar
  16. Aracri E, Valls C, Vidal T (2012) Paper strength improvement by oxidative modification of sisal cellulose fibers with laccase–TEMPO system: influence of the process variables. Carbohydr Polym 88(3):830–837CrossRefGoogle Scholar
  17. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574CrossRefGoogle Scholar
  18. Baez C, Considine J, Rowlands R (2014) Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose 21(1):347–356CrossRefGoogle Scholar
  19. Bardet R, Reverdy C, Belgacem N, Leirset I, Syverud K, Bardet M, Bras J (2015) Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment. Cellulose 22:1227–1241CrossRefGoogle Scholar
  20. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84(3):975–983CrossRefGoogle Scholar
  21. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24(12):1259–1268CrossRefGoogle Scholar
  22. Bilodeau M, Bousfield D, Luu W, Richmond F, Paradis M (2012) Potential applications of nanofibrillated cellulose in printing and writing papers. In: TAPPI international conference on nanotechnology for renewable materials, June 5–7, Montreal, QCGoogle Scholar
  23. Bragd P, Van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27(1–4):49–66CrossRefGoogle Scholar
  24. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169CrossRefGoogle Scholar
  25. Brodin FW, Theliander H (2013) A comparison of softwood and birch kraft pulp fibers as raw materials for production of TEMPO-oxidized pulp, MFC and superabsorbent foam. Cellulose 20(6):2825–2838CrossRefGoogle Scholar
  26. Brodin FW, Lund K, Brelid H, Theliander H (2012) Reinforced absorbent material: a cellulosic composite of TEMPO-oxidized MFC and CTMP fibres. Cellulose 19(4):1413–1423CrossRefGoogle Scholar
  27. Brodin FW, Gregersen ØW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material—a review. Nord Pulp Pap Res J 29(1):156–166CrossRefGoogle Scholar
  28. Carlsson DO, Lindh J, Strømme M, Mihranyan A (2015) Susceptibility of Iα- and Iβ-dominated cellulose to TEMPO-mediated oxidation. Biomacromolecules 16:1643–1649CrossRefGoogle Scholar
  29. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107CrossRefGoogle Scholar
  30. Charfeddine MA, Roussiere F, Bloch J-F, Ridgway C, Gane PAC, Mangin PJ (2014) Impact on paper properties of z-direction structuring by the layered addition of micro-nano-fibrillated cellulose (MNFC). In: TAPPI international conference on nanotechnology for renewable materials, Vancouver, British Columbia Canada, 23–26 JuneGoogle Scholar
  31. Charreau H, Foresti ML, Vázquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7(1):56–80CrossRefGoogle Scholar
  32. Chauhan VS, Chakrabarti SK (2012) Use of nanotechnology for high performance cellulosic and papermaking products. Cellul Chem Technol 46(5–6):389–400Google Scholar
  33. Chen W, Yu H, Liu Y (2011a) Preparation non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Carbohydr Polym 86(2):453–461CrossRefGoogle Scholar
  34. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811CrossRefGoogle Scholar
  35. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011c) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442CrossRefGoogle Scholar
  36. Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115(5):2756–2762CrossRefGoogle Scholar
  37. Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81(3):720–725CrossRefGoogle Scholar
  38. Chinga-Carrasco G (2013) Optical methods for the quantification of the fibrillation degree of bleached MFC materials. Micron 48:42–48CrossRefGoogle Scholar
  39. Chinga-Carrasco G (2014). Nanocellulose as a biomaterial—characteristics and bio-applications. In: 5th recent advances in cellulose nanotechnology research seminar, Oct 28–29, TrondheimGoogle Scholar
  40. Chinga-Carrasco G, Averianova N, Gibadullin M, Petrov V, Leirset I, Syverud K (2013) Micro-structural characterisation of homogeneous and layered MFC nano-composites. Micron 44:331–338CrossRefGoogle Scholar
  41. Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nanocellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28Google Scholar
  42. Chun S-J, Lee SY, Doh GH, Lee S, Kim JH (2011) Preparation of ultrastrength nanopapers using cellulose nanofibrils. J Ind Eng Chem 17(3):521–526CrossRefGoogle Scholar
  43. Ciriminna R, Pagliaro M (2009) Industrial oxidations with organocatalyst TEMPO and its derivatives. Org Process Res Dev 14(1):245–251CrossRefGoogle Scholar
  44. Clelia M, Bruno J (2014) Nanocellulose/polymer multilayered thin films: tunable architectures towards tailored physical properties. Nord Pulp Pap Res J 29(1):19–30CrossRefGoogle Scholar
  45. Danumah C (2014) CNC characterisation: An essential step towards profiling physicochemical properties. In: TAPPI international conference on nanotechnology for renewable materials, June 23–26, Vancouver, BCGoogle Scholar
  46. Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997CrossRefGoogle Scholar
  47. Djafari Petroudy SR, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydr Polym 99:311–318CrossRefGoogle Scholar
  48. Dufresne A, Cavaillé JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185–1194CrossRefGoogle Scholar
  49. Duker E, Lindström T (2008) On the mechanisms behind the ability of CMC to enhance paper strength. Nord Pulp Pap Res J 23(1):57–64CrossRefGoogle Scholar
  50. Duker E, Brännvall E, Lindström T (2007) The effects of CMC attachment onto industrial and laboratory-cooked pulps. Nord Pulp Pap Res J 22(3):356–363CrossRefGoogle Scholar
  51. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  52. Eriksen O, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23(3):299–304CrossRefGoogle Scholar
  53. Eriksson M, Pettersson G, Wågberg L (2005) Application of polymeric multilayers of starch onto wood fibres to enhance strength properties of paper. Nord Pulp Pap Res J 20(3):270–275CrossRefGoogle Scholar
  54. Fall A (2013) Colloidal interactions and orientation of nanocellulose particles. Doctoral thesis in fibre and polymer science. Royal Institute of Technology, StockholmGoogle Scholar
  55. Fall AB, Burman A, Wågberg L (2014) Cellulosic nanofibrils from eucalyptus, acacia and pine fibers. Nord Pulp Pap Res J 29(1):176–184CrossRefGoogle Scholar
  56. Fang Z, Zhu H, Preston C, Han X, Li Y, Lee S, Chai X, Chen G, Hu L (2013) Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J Mater Chem 1(39):6191–6197Google Scholar
  57. Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chem Eur J 7(9):1831–1835CrossRefGoogle Scholar
  58. Floury J, Desrumaux A, Lardieres J (2000) Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov Food Sci Emerg Technol 1(2):127–134CrossRefGoogle Scholar
  59. Floury J, Bellettre J, Legrand J, Desrumaux A (2004) Analysis of a new type of high pressure homogeniser. A study of the flow pattern. Chem Eng Sci 59(4):843–853CrossRefGoogle Scholar
  60. Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165CrossRefGoogle Scholar
  61. Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93(1):172–177CrossRefGoogle Scholar
  62. Gamelas JAF, Pedrosa J, Lourenco AF, Mutjé P, González I, Chinga-Carrasco G, Singh G, Ferreiraa PJ (2015) On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron 72:28–33CrossRefGoogle Scholar
  63. Gonzalez I, Boufi S, Pelach MA, Alcala M, Vilaseca F, Mutje P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7(4):5167–5180CrossRefGoogle Scholar
  64. Gonzalez I, Vilaseca F, Alcala M, Pelach MA, Boufi S, Mutje P (2013) Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose 20(3):1425–1435CrossRefGoogle Scholar
  65. Gray D (1994) Chiral nematic ordering of polysaccharides. Carbohydr Polym 25(4):277–284CrossRefGoogle Scholar
  66. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRefGoogle Scholar
  67. Hamilton R (2014) Using renewable nanotechnology (and other novel approaches) to improve base paper performance. AWA silicon technology seminar, March 19, AmsterdamGoogle Scholar
  68. Hansen P, Sundvall Ö (2012) On-line crill sensor commercially available 2012. In: International paper physics and 8th international paper and coating chemistry conference, Stockholm, Sweden, June 10–14, 2012, posterGoogle Scholar
  69. Hayes MG, Kelly AL (2003) High pressure homogenisation of raw whole bovine milk (a) effects on fat globule size and other properties. J Dairy Res 70(03):297–305CrossRefGoogle Scholar
  70. Heng JY, Pearse DF, Thielmann F, Lampke T, Bismarck A (2007) Methods to determine surface energies of natural fibres: a review. Compos Interfaces 14(7–9):581–604CrossRefGoogle Scholar
  71. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441CrossRefGoogle Scholar
  72. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585CrossRefGoogle Scholar
  73. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. In: Journal of applied polymer sciences. Applied polymer, symposium, vol 37, Syracuse, NY, pp 797–813Google Scholar
  74. Hettrich K, Pinnow M, Volkert B, Passauer L, Fischer S (2014) Novel aspects of nanocellulose. Cellulose 21:2479–2488CrossRefGoogle Scholar
  75. Hii C, Gregersen ØW, Chinga-Carrasco G, Eriksen Ø (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nord Pulp Pap Res J 27(2):388–396CrossRefGoogle Scholar
  76. Hirn U, Schennach R (2015) Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper. Sci Rep 5(10503):1–9Google Scholar
  77. Ho T, Zimmermann T, Hauert R, Caseri W (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18(6):1391–1406CrossRefGoogle Scholar
  78. Hoeger IC, Nair SS, Ragauskas AJ, Deng Y, Rojas OJ, Zhu JY (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2):807–818CrossRefGoogle Scholar
  79. Hult EL, Iotti M, Lenes M (2010) Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose 17(3):575–586CrossRefGoogle Scholar
  80. Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145CrossRefGoogle Scholar
  81. Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59(6):449–459CrossRefGoogle Scholar
  82. Isogai A, Saito T, Fukuzumi H (2011a) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRefGoogle Scholar
  83. Isogai T, Saito T, Isogai A (2011b) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18(2):421–431CrossRefGoogle Scholar
  84. Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81(6):1109–1112CrossRefGoogle Scholar
  85. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89(2):461–466CrossRefGoogle Scholar
  86. Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Clegg F, Aucejo S (2012) Renewable fibers and bio-based materials for packaging applications—a review of recent developments. BioResources 7(2):2506–2552CrossRefGoogle Scholar
  87. Johnson DA (2014) Effects of CNF on papermaking properties. TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BCGoogle Scholar
  88. Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969CrossRefGoogle Scholar
  89. Josset S, Orsolini P, Siqueira G, Tejado A, Tingaut P, Zimmermann T (2014) Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nord Pulp Pap Res J 29(1):167–175CrossRefGoogle Scholar
  90. Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292(1):5–31CrossRefGoogle Scholar
  91. Kangas H, Lahtinen P, Sneck A, Saariaho A-M, Laitinen O, Hellén E (2014) Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. Nord Pulp Pap Res J 29(1):129–143CrossRefGoogle Scholar
  92. Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346(1):76–85CrossRefGoogle Scholar
  93. Kekäläinen K, Liimatainen H, Niinimäki J (2014a) Disintegration of periodate–chlorite oxidized hardwood pulp fibres to cellulose microfibrils: kinetics and charge threshold. Cellulose 21:3691–3700CrossRefGoogle Scholar
  94. Kekäläinen K, Liimatainen H, Illikainen M, Maloney TC, Niinimäki J (2014b) The role of hornification in the disintegration behaviour of TEMPO-oxidized bleached hardwood fibres in a high-shear homogenizer. Cellulose 21(3):1163–1174CrossRefGoogle Scholar
  95. Kleinebudde P, Jumaa M, El Saleh F (2000) Influence of degree of polymerization on behavior of cellulose during homogenization and extrusion/spheronization. AAPS PharmSci 2(3):18–27CrossRefGoogle Scholar
  96. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Progr Polym Sci 26(9):1561–1603CrossRefGoogle Scholar
  97. Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. In: Klemm D (ed) Advances in Polymer Science (Polysaccharides II), vol 205. Springer, Heidelberg, pp 49–96Google Scholar
  98. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRefGoogle Scholar
  99. Lahtinen P, Liukkonen S, Pere J, Sneck A, Kangas H (2014) A comparative study of fibrillated fibers from different mechanical and chemical pulps. BioResources 9(2):2115–2127CrossRefGoogle Scholar
  100. Laine J, Lindström T, Nordmark GG, Risinger G (2002) Studies on topochemical modification of cellulosic fibres—part 2. The effect of carboxymethyl cellulose attachment on fibre swelling and paper strength. Nord Pulp Pap Res J 17(1):50–56CrossRefGoogle Scholar
  101. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764CrossRefGoogle Scholar
  102. Lavoine N, Bras J, Desloges I (2014a) Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose. J Appl Polym Sci. doi: 10.1002/APP.40106 Google Scholar
  103. Lavoine N, Desloges I, Bras J (2014b) Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydr Polym 103:528–537CrossRefGoogle Scholar
  104. Leung ACW, Lam E, Chong J, Hrapovic S, Luong JH (2013) Reinforced plastics and aerogels by nanocrystalline cellulose. J Nanopart Res 15(5):1–24CrossRefGoogle Scholar
  105. Li Y, Zhu H, Gu H, Dai H, Fang Z (2013) Strong transparent magnetic nanopaper prepared by immobilization of Fe3O4 nanoparticles in a nanofibrillated cellulose network. J Mater Chem A 1(48):15278–15283CrossRefGoogle Scholar
  106. Liimatainen H, Visanko M, Sirviö JA, Hormi OE, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13:1592–1597CrossRefGoogle Scholar
  107. Lindh J, Carlsson DO, Strømme M, Mihranyan A (2014) Convenient one-pot formation of 2,3-dialdehyde cellulose beads via periodate oxidation of cellulose in water. Biomacromolecules 15:1928–1932CrossRefGoogle Scholar
  108. Lindström T (1992) Chemical factors affecting the behaviour of fibres during papermaking. Nord Pulp Pap Res J 4:181–192CrossRefGoogle Scholar
  109. Lindström T, Ankerfors M, Henriksson G (2007) Method for treating chemical pulp for manufacturing microfibrillated cellulose. PCT Int Appl. 2007-SE82; 2006-272:14Google Scholar
  110. Lindström ME, Söderberg D, Henriksson G (2012) Single-step method for production of nano pulp by acceleration and disintegration of raw material, World patent no. WO2012/115590Google Scholar
  111. Lindström T, Aulin C, Gimåker M, Persson T (2014) The emergence of practical nanocellulose applications for a more sustainable paper/board industry. Indian Pulp Pap Tech Assoc 26:53–61Google Scholar
  112. Liu DY, Sui GX, Bhattacharya D (2014) Synthesis and characterisation of nanocellulose-based polyaniline conducting films. Compos Sci Technol 99:31–36CrossRefGoogle Scholar
  113. López-Rubio A, Lagaron JM, Ankerfors M, Lindström T, Nordqvist D, Mattozzi A, Hedenqvist MS (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68(4):718–727CrossRefGoogle Scholar
  114. Lumiainen J (1998) Refining of chemical pulp. In: Paulapuro H (ed) Papermaking science and technology, book 8 papermaking part 1, stock preparation and wet end. Fapet Oy, HelsinkiGoogle Scholar
  115. Martin-Sampedro R, Filpponen I, Hoeger IC, Zhu JY, Laine J, Rojas OJ (2012) Rapid and complete enzyme hydrolysis of lignocellulosic nanofibrils. ACS Macro Lett 1(11):1321–1325CrossRefGoogle Scholar
  116. Mautner A, Lee KY, Lahtinen P, Hakalahti M, Tammelin T, Li K, Bismarck A (2014) Nanopapers for organic solvent nanofiltration. Chem Commun 50(43):5778–5781CrossRefGoogle Scholar
  117. Miller J (2014) Nanocellulose: technology applications, and markets. In: TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BCGoogle Scholar
  118. Mishra SP, Manent AS, Chabot B, Daneault C (2012) Production of nanocellulose from native cellulose-various options utilizing ultrasound. BioResources 7(1):422–436Google Scholar
  119. Missoum K, Belgacem NM, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766CrossRefGoogle Scholar
  120. Mohlin U, Alfredsson C (1990) Fibre deformation and its implications in pulp characterization. Nord Pulp Pap Res J 4:172–179CrossRefGoogle Scholar
  121. Moon RJ, Martin A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  122. Mörseburg K, Chinga-Carrasco G (2009) Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets. Cellulose 16(5):795–806CrossRefGoogle Scholar
  123. Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69(7):1293–1297CrossRefGoogle Scholar
  124. Nelson K (2014) Low cost production of nanocellulose with the AVAP biorefinery technology. In: TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BCGoogle Scholar
  125. Nygårds S (2011) Nanocellulose in pigment coatings—aspects of barrier properties and printability in offset. Master’s thesis. Linkoping University, Department of Physics, Chemistry and Biology and Innventia AB, SwedenGoogle Scholar
  126. Osong SH (2014) Mechanical pulp based nano-ligno-cellulose: production, characterisation and their effect on paper properties. Licentiate thesis, Mid Sweden University, ISBN: 978-91-87557-42-2Google Scholar
  127. Osong SH, Norgren S, Engstrand P (2013) An approach to produce nano-ligno-cellulose from mechanical pulp fine materials. Nord Pulp Pap Res J 28(4):472–479CrossRefGoogle Scholar
  128. Osong SH, Norgren S, Engstrand P (2014a) Paper strength improvement by inclusion of nano-ligno-cellulose to chemi-thermomechanical pulp. Nord Pulp Pap Res J 29(2):309–316CrossRefGoogle Scholar
  129. Osong SH, Norgren S, Engstrand P, Lundberg M, Hansen P (2014b) Crill: a novel technique to characterize nano-ligno-cellulose. Nord Pulp Pap Res J 29(2):190–194CrossRefGoogle Scholar
  130. Osong SH, Norgren S, Engstrand P (2014c). Recent developments in nano-ligno-cellulose production and the crill characterisation technique. In: TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BCGoogle Scholar
  131. Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5(11):4640–4647CrossRefGoogle Scholar
  132. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941CrossRefGoogle Scholar
  133. Page DH (1969) A theory for the tensile strength of paper. TAPPI 52(4):674–681Google Scholar
  134. Pajari H, Rautkoski H, Moilanen P (2012) Replacement of synthetic binders with nanofibrillated cellulose in board coating: pilot scale studies. In: TAPPI international conference on nanotechnology for renewable materialsGoogle Scholar
  135. Paquin P (1999) Technological properties of high pressure homogenizers: the effect of fat globules, milk proteins, and polysaccharides. Int Dairy J 9(3):329–335CrossRefGoogle Scholar
  136. Peng Y, Gardner DJ, Han Y, Cai Z, Tshabalala MA (2013a) Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J Colloid Interface Sci 405:85–95CrossRefGoogle Scholar
  137. Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z (2013b) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5):2379–2392CrossRefGoogle Scholar
  138. Plackett DV, Letchford K, Jackson JK, Burt HM (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29(1):105–118CrossRefGoogle Scholar
  139. Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97(1):226–234CrossRefGoogle Scholar
  140. Qvintus P (2015) Cellulose nanofibrils: overcoming challenges on the development of nanocellulose-based products In: TAPPI international conference on nanotechnology for renewable materials, Atlanta, GA, pp 201–236Google Scholar
  141. Rånby BG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3:649–650CrossRefGoogle Scholar
  142. Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164CrossRefGoogle Scholar
  143. Rånby BG, Ribi E (1950) Uber den feinbau der zellulose. Experimentia 6:12–14CrossRefGoogle Scholar
  144. Rantanen J, Maloney TC (2013) Press dewatering and nip rewetting of paper containing nano- and microfibril cellulose. Nord Pulp Pap Res J 28(4):582–587CrossRefGoogle Scholar
  145. Rantanen J, Pirttiniemi J, Kuosmanen P, Maloney TC (2014) Development of a microfibrillated cellulose composite web forming method. In: TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BCGoogle Scholar
  146. Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomater Nanobiotechnol 4:165–188CrossRefGoogle Scholar
  147. Reddy JP, Rhim J-W (2014) Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydr Polym 110:480–488CrossRefGoogle Scholar
  148. Revol J-F (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2(2):123–134CrossRefGoogle Scholar
  149. Revol JF, Godbout L, Dong X-M, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspension of cellulose crystallites, Phase separation and magnetic field orientation. Liq Cryst 16(1):127–134CrossRefGoogle Scholar
  150. Richmond F (2014) Cellulose nanofibers use in coated paper. Doctoral thesis, University of MaineGoogle Scholar
  151. Richmond F, Haughwout C, Bousfield D (2014) The use of cellulose nanofibers in paper coating formulation. In: TAPPI papercon, pp 2141–2154Google Scholar
  152. Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1):127–134CrossRefGoogle Scholar
  153. Saito T, Isogai A (2005) A novel method to improve wet strength of paper. TAPPI J 4(3):3–8Google Scholar
  154. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRefGoogle Scholar
  155. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491CrossRefGoogle Scholar
  156. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12(10):3638–3644CrossRefGoogle Scholar
  157. Shatkin JA, Wegner TH, Bilek E, Cowie J (2014) Market projections of cellulose nanomaterial-enabled products—part 1: applications. TAPPI J 13(5):9–16Google Scholar
  158. Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13(3):842–849CrossRefGoogle Scholar
  159. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  160. Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119(5):2652–2660CrossRefGoogle Scholar
  161. Sirviö JA, Kolehmainen A, Liimatainen H, Niinimäki J, Hormi OEO (2014) Biocomposite cellulose-alginate films: promising packaging materials. Food Chem 151:343–351CrossRefGoogle Scholar
  162. Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010a) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968CrossRefGoogle Scholar
  163. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010b) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848CrossRefGoogle Scholar
  164. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111CrossRefGoogle Scholar
  165. Steenberg B, Sandgren B, Wahren D (1960) Studies on Pulp Crill, Part 1. Suspended fibrils in paper pulp fines. Svensk Papperstidning 12:395–397Google Scholar
  166. Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48(24):11211–11219CrossRefGoogle Scholar
  167. Stenius P (2014). Nanocellulose technology—conclusions and perspectives 2006–2014. 5th recent advances in cellulose nanotechnology research seminar, Oct 28–29, TrondheimGoogle Scholar
  168. Su J, Mosse WKJ, Sharman S, Batchelor WJ, Garnier G (2013) Effect of tethered and free microfibrillated cellulose (MFC) on the properties of paper composites. Cellulose 20(4):1925–1935CrossRefGoogle Scholar
  169. Svending P (2014) Commercial break-through in MFC processing. In: TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BCGoogle Scholar
  170. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85CrossRefGoogle Scholar
  171. Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84(3):1033–1038CrossRefGoogle Scholar
  172. Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020CrossRefGoogle Scholar
  173. Tanaka A, Seppänen V, Houni J, Sneck A, Pirkonen P (2012) Nanocellulose characterization with mechanical fractionation. Nord Pulp Pap Res J 27(4):689–694CrossRefGoogle Scholar
  174. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47(3):291–294CrossRefGoogle Scholar
  175. TAPPI. Proposed New TAPPI Standard: Standard terms and their definition for cellulose nanomaterial. Draft for review, WI 3021Google Scholar
  176. Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30(1):27–32CrossRefGoogle Scholar
  177. Tejado A, Alam MN, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19(3):831–842CrossRefGoogle Scholar
  178. Thiebaud M, Dumay E, Picart L, Guiraud JP, Cheftel JC (2003) High-pressure homogenisation of raw bovine milk. Effects on fat globule size distribution and microbial inactivation. Int Dairy J 13(6):427–439CrossRefGoogle Scholar
  179. Torvinen K (2014) Binding fillers for high filler content papers by using CNF/CMF. In TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BCGoogle Scholar
  180. Torvinen K, Kouko J, Passoja S, Keränen JT, Hellén E (2014) Cellulose micro and nanofibrils as a binding material for high filler content papers. In: TAPPI Papercon, pp 733–746Google Scholar
  181. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Journal of applied polymer sciences. Applied polymer, symposium (United States), ITT Rayonier Inc., Shelton, WAGoogle Scholar
  182. Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12(2):348–353CrossRefGoogle Scholar
  183. Varanasi S, He R, Batchelor W (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 20:1885–1896CrossRefGoogle Scholar
  184. Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf 27(1):163–173CrossRefGoogle Scholar
  185. Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnas K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795CrossRefGoogle Scholar
  186. Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113(2):1270–1275CrossRefGoogle Scholar
  187. Wang B, Sain M (2007a) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56(4):538–546CrossRefGoogle Scholar
  188. Wang B, Sain M (2007b) The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. BioResources 2(3):371–388Google Scholar
  189. Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14(2):89–103CrossRefGoogle Scholar
  190. Xhanari K, Syverud K, Chinga-Carrasco G, Paso K, Stenius P (2011a) Structure of nanofibrillated cellulose layers at the o/w interface. J Colloid Interface Sci 356(1):58–62CrossRefGoogle Scholar
  191. Xhanari K, Syverud K, Chinga-Carrasco G, Paso K, Stenius P (2011b) Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose 18(2):257–270CrossRefGoogle Scholar
  192. Xue MD, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082CrossRefGoogle Scholar
  193. Yoo S, Hsieh JS (2010) Enzyme-assisted preparation of fibrillated cellulose fibers and its effect on physical and mechanical properties of paper sheet composites. Ind Eng Chem Res 49(5):2161–2168CrossRefGoogle Scholar
  194. Zhang W, Johnson RK, Lin Z, Chandoha-Lee C, Zink-Sharp A, Renneckar S (2013) In situ generated cellulose nanoparticles to enhance the hydrophobicity of paper. Cellulose 20(6):2935–2945CrossRefGoogle Scholar
  195. Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26(8):2659–2668CrossRefGoogle Scholar
  196. Zhao H-P, Feng XQ, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90(7):073112. doi: 10.1063/1.2450666 CrossRefGoogle Scholar
  197. Zheng H (2014) Production of fibrillated cellulose materials—effects of pretreatments and refining strategy on pulp properties. School of Chemical Technology, Degree Program of Bioproducts Technology, Aalto University, EspooGoogle Scholar
  198. Zhu H, Helander M, Moser C, Stahlkranz A, Söderberg D, Henriksson G, Lindström M (2012) A novel nano cellulose preparation method and size fraction by cross flow ultra-filtration. Curr Org Chem 16(16):1871–1875CrossRefGoogle Scholar
  199. Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L (2013) Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 13(7):3093–3100CrossRefGoogle Scholar
  200. Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7(1):269–287CrossRefGoogle Scholar
  201. Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of Science, Technology, and MediaMid Sweden UniversitySundsvallSweden

Personalised recommendations