Cellulose

, Volume 23, Issue 1, pp 145–161

Prediction of the structures of the plant-specific regions of vascular plant cellulose synthases and correlated functional analysis

  • Latsavongsakda Sethaphong
  • Jonathan K. Davis
  • Erin Slabaugh
  • Abhishek Singh
  • Candace H. Haigler
  • Yaroslava G. Yingling
Original Paper

DOI: 10.1007/s10570-015-0789-6

Cite this article as:
Sethaphong, L., Davis, J.K., Slabaugh, E. et al. Cellulose (2016) 23: 145. doi:10.1007/s10570-015-0789-6

Abstract

Seed plants express cellulose synthase (CESA) protein isoforms with non-redundant functions, but how the isoforms function differently is unknown. Compared to bacterial cellulose synthases, CESAs have two insertions in the large cytosolic loop: the relatively well-conserved Plant Conserved Region (P-CR) and a Class Specific Region (CSR) that varies between CESAs. Absent any atomic structure of a plant CESA, we used ab initio protein structure prediction and molecular modeling to explore how these plant-specific regions may modulate CESA function. We modeled P-CR and CSR peptides from Arabidopsis thaliana CESAs representing the six clades of seed plant CESAs. As expected, the predicted wild type P-CR structures were similar. Modeling of the mutant P-CR of Atcesa8R362K (fra6) suggested that changes in local structural stability and surface electrostatics may cause the mutant phenotype. Among CSRs within CESAs required for primary wall cellulose synthesis, the amino sequence and the modeled arrangement of helices was most similar in AtCESA1 and AtCESA3. Genetic complementation of known Arabidopsis mutants showed that the CSRs of AtCESA1 and AtCESA3 can function interchangeably in vivo. Analysis of protein surface electrostatics led to ideas about how the surface charges on CSRs may mediate protein–protein interactions. Refined modeling of the P-CR and CSR regions of GhCESA1 from cotton modified their tertiary structures, spatial relationships to the catalytic domain, and preliminary predictions about CESA oligomer formation. Cumulatively, the results provide structural clues about the function of plant-specific regions of CESA.

Keywords

Arabidopsis thaliana Cellulose synthesis Computational protein structure prediction Isoform specificity Mutant complementation 

Supplementary material

10570_2015_789_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1320 kb)

Funding information

Funder NameGrant NumberFunding Note
U.S. Department of Energy
  • DE-SC0001090

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Latsavongsakda Sethaphong
    • 1
  • Jonathan K. Davis
    • 2
  • Erin Slabaugh
    • 2
  • Abhishek Singh
    • 1
  • Candace H. Haigler
    • 2
    • 3
  • Yaroslava G. Yingling
    • 1
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.Department of Crop ScienceNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations