, Volume 22, Issue 6, pp 3619–3631 | Cite as

Characterization, immobilization, and activity enhancement of cellulase treated with supercritical CO2

  • Deniz Senyay-OncelEmail author
  • Ozlem Yesil-Celiktas
Original Paper


Enzyme activity enhancement represents a great opportunity for biotechnological production, while recovery of most enzymes from media, possible loss of catalytic activity in reactions, and denaturation occur. In this study, the activity and stability enhancement, kinetic parameters, and thermal inactivation for cellulose hydrolysis of supercritical carbon dioxide (SC-CO2)-treated and untreated cellulase from Trichoderma longibrachiatum as a model enzyme are presented, and the activity enhancement capability of SC-CO2 for cellulase after consecutive enzymatic reactions is discussed. The pH and temperature stability were pH 5 and 50 °C for the enzymatic reaction, whereas the kinetic parameter values, V max and K m, were calculated using the Michaelis–Menten model. The optimal operational parameters were determined to be 54 °C, 180 bar, and 10 g/min CO2 flow rate for 120 min, yielding 48.3 % higher activity (9.27 μmol/ml/min) than for untreated enzyme. In addition, SC-CO2-treated cellulase with the highest activity was immobilized on NaY zeolite, and consecutive reactions were carried out. The presented results suggest that enzymes as catalysts in biochemical applications can be improved by using supercritical fluids as potential media.


Supercritical CO2 Cellulase Enzyme activity Kinetic parameters 


  1. Andreaus J, Azevedo H, Cavaco-Paulo A (1999) Effects of temperature on the cellulose binding ability of cellulase enzymes. J Mol Catal B Enzym 7:233–239. doi: 10.1016/S1381-1177(99)00032-6 CrossRefGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantisation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  3. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268. doi: 10.1351/pac198759020257 Google Scholar
  4. Gokhale AA, Lu J, Lee I (2013) Immobilization of cellulase on magnetoresponsive graphene nano-supports. J Mol Catal B Enzym 90:76–86. doi: 10.1016/j.molcatb.2013.01.025 CrossRefGoogle Scholar
  5. Habulin M, Knez Z (2001) Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane. J Chem Technol Biotechnol 76:1260–1266. doi: 10.1002/jctb.514 CrossRefGoogle Scholar
  6. Illanes A, Cauerhff A, Wilson L, Castro GR (2012) Recent trends in biocatalysis engineering. Bioresour Technol 115:48–57. doi: 10.1016/j.biortech.2011.12.050 CrossRefGoogle Scholar
  7. Jana A, Halder SK, Banerjee A, Paul T, Pati BR, Mondal KC, Mohapatra PKD (2014) Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: a molecular advancement. Bioresour Technol 157:327–340. doi: 10.1016/j.biortech.2014.02.017 CrossRefGoogle Scholar
  8. Kiranmayi MU, Poda S, Vijayalakshmi M (2012) Optimization of process parameters for the production of cellulases by Trichoderma reesei using agrowastes as a carbon source. Int J Curr Res 4:169–173Google Scholar
  9. Knez Z, Habulin M (1994) Lipase catalyzed esterification at high pressure. Biocatalysis 9:115–121CrossRefGoogle Scholar
  10. Knez Z, Habulin M, Primozic M (2005) Enzymatic reactions in dense gases. Biochem Eng J 27:120–126. doi: 10.1016/j.supflu.2008.11.012 CrossRefGoogle Scholar
  11. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:1–10. doi: 10.4061/2011/280696 CrossRefGoogle Scholar
  12. Leghlimi H, Meraihi Z, Boukhalfa-Lezzar H, Copinet E, Duchiron F (2013) Production and characterization of cellulolytic activities produced by Trichoderma longibrachiatum (GHL). Afr J Biotechnol 12:465–475. doi: 10.5897/AJB12.917 Google Scholar
  13. Liao HD, Yuan L, Tong CY, Zhu YH, Li D, Liu XM (2008) Immobilization of cellulase based on polyvinyl alcohol/Fe2O3 nanoparticles. Chem J Chin Univ 29:1564–1568Google Scholar
  14. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666. doi: 10.1021/ja01318a036 CrossRefGoogle Scholar
  15. Linowski JW, Liu NI, Jonas J (1976) Pressure dependence of the proton NMR chemical shift in liquid water. J Chem Phys 65:3383–3384. doi: 10.1063/1.433473 CrossRefGoogle Scholar
  16. Liu Y, Chenc D, Wang S (2013) Effect of sub- and super-critical CO2 pretreatment on conformation and catalytic properties evaluation of two commercial enzymes of CALB and lipase PS. J Chem Technol Biotechnol 88:1750–1756. doi: 10.1002/jctb.4037 CrossRefGoogle Scholar
  17. Melgosa R, Sanz MT, Solaes AG, Bucio SL, Beltran S (2015) Enzymatic activity and conformational and morphological studies of four commercial lipases treated with supercritical carbon dioxide. J Supercrit Fluids 97:51–62. doi: 10.1016/j.supflu.2014.11.003 CrossRefGoogle Scholar
  18. Miletic N, Nastasovic A, Loos K (2012) Immobilization of biocatalysts for enzymatic polymerizations: possibilities, advantages, applications. Bioresour Technol 115:126–135. doi: 10.1016/j.biortech.2011.11.054 CrossRefGoogle Scholar
  19. Muratov G, Seo KW, Kim C (2005) Application of supercritical carbon dioxide to the bioconversion of cotton fibers. Ind Eng Chem Res 11:42–46Google Scholar
  20. Okada G (1975) Enzymatic studies on a cellulase system of Trichoderma viride II. purification and properties of two cellulases. J Biochem 77:33–42Google Scholar
  21. Park CY, Ryu YW, Kim C (2001) Kinetics and rate of enzymatic hydrolysis of cellulose in supercritical carbon dioxide. Korean J Chem Eng 18:475–478. doi: 10.1007/BF02698293 CrossRefGoogle Scholar
  22. Senyay-Oncel D, Yesil-Celiktas O (2011) Activity and stability enhancement of α-amylase treated with sub- and supercritical carbon dioxide. J Biosci Bioeng 112:434–440. doi: 10.1016/j.jbiosc.2011.07.012 Google Scholar
  23. Senyay-Oncel D, Yesil-Celiktas O (2013) Treatment of immobilized α-amylase under supercritical CO2 conditions: can activity be enhanced after consecutive enzymatic reactions? J Mol Catal B Enzym 91:72–76. doi: 10.1016/j.molcatb.2013.03.003 CrossRefGoogle Scholar
  24. Senyay-Oncel D, Kazan A, Yesil-Celiktas O (2014) Processing of protease under sub- and supercritical conditions for activity and stability enhancement. Biochem Eng J 92:83–89CrossRefGoogle Scholar
  25. Srinivas R, Panda T (1998) pH and thermal stability studies of carboxymethyl cellulase from intergeneric fusants of Trichoderma reesei/Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 21:178–183. doi: 10.1038/sj.jim.2900556 CrossRefGoogle Scholar
  26. Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J Sci Ind Res 64:832–844Google Scholar
  27. Tao M, Li Q, Qu J, Zhang M (2013) Enzymatic synthesis of dipalmitin in supercritical carbon dioxide and mechanism study. Ind Eng Chem Res 52:13528–13535. doi: 10.1021/ie4015364 CrossRefGoogle Scholar
  28. Tewari YB, Vanderah DJ, Rozzell JD (2003) Thermodynamics of the lipase-catalyzed transesterification of 1-phenyl-1-alkanols and butyl acetate in organic solvents. J Mol Catal B Enzym 21:123–131. doi: 10.1016/S1381-1177(02)00120-0 CrossRefGoogle Scholar
  29. Yamanobe T, Obuchi K (2002) High pressure enhancement of cellulase activities. In: Hayashi R (ed) Trends in high pressure bioscience and biotechnology. Elsevier, The Netherlands, pp 193–199Google Scholar
  30. Yu ZR, Rizvi SSH, Zollweg JA (1992) Enzymatic esterification of fatty acid mixtures from milk fat and anhydrous milk fat with canola oil in supercritical carbon dioxide. Biotechnol Prog 8:508–513CrossRefGoogle Scholar
  31. Zhang Y, Xu J, Yuan Z, Xu H, Yu Q (2010) Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresour Technol 101:3153–3158. doi: 10.1016/j.biortech.2009.12.080 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Biomechanics, Institute of Health SciencesDokuz Eylul UniversityBalcova, İzmirTurkey
  2. 2.Department of Bioengineering, Faculty of EngineeringEge UniversityBornova, İzmirTurkey

Personalised recommendations