Advertisement

Cellulose

, Volume 23, Issue 1, pp 915–927 | Cite as

Healable superhydrophobicity of novel cotton fabrics modified via one-pot mist copolymerization

  • Guanghui Xi
  • Jun Wang
  • Guangyan Luo
  • Yanhui Zhu
  • Wanchao Fan
  • Meiqi Huang
  • Haiqing Wang
  • Xiangdong LiuEmail author
Original Paper

Abstract

We describe a simple one-pot mist copolymerization process to fabricate superhydrophobic cotton fabrics. A mixture solution consisting of a free radical initiator, tert-butyl peroxybenzoate (TBPB), and three monomers, lauryl methacrylate (LMA), 2-isocyanatoethyl methacrylate (IEM), and ethylene glycol dimethacrylate (EGD), is atomized to one side of a cotton fabric and polymerized on the surface. SEM images indicate that the copolymer layer on the cotton fiber surface has a randomly wrinkled morphology exhibiting nanoscale roughness. Wetting tests demonstrate that the modified surface possesses a remarkable superhydrophobicity with multiple healing functionalities. A simple ironing treatment at about 200 °C can recover the degraded superhydrophobicity of the modified cotton fabric suffered from 60 cycles of laundries or 2000 cycles of Martindale abrasion. Notably, the mist copolymerization process has no significant impact on the cotton advantages, such as flexibility, water absorptivity, and vapor permeability.

Keywords

Superhydrophobicity Cotton fabric Ironing Healing ability Mist polymerization 

Notes

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (51573167), Scientific Research Foundation for the Returned Overseas Chinese Scholars, and State Education Ministry (1101603-C).

Supplementary material

Supplementary material 1 (AVI 6943 kb)

Supplementary material 2 (AVI 6856 kb)

References

  1. Abbas R, Khereby MA, Sadik WA, El Demerdash AGM (2014) Fabrication of durable and cost effective superhydrophobic cotton textiles via simple one step process. Cellulose 22:887–896. doi: 10.1007/s10570-014-0514-x CrossRefGoogle Scholar
  2. Abou-Okeil A, El-Sawy SM, Abdel-Mohdy FA (2013) Flame retardant cotton fabrics treated with organophosphorus polymer. Carbohyd Polym 92:2293–2298. doi: 10.1016/j.carbpol.2012.12.008 CrossRefGoogle Scholar
  3. Ali SW, Purwar R, Joshi M, Rajendran S (2014) Antibacterial properties of aloe vera gel-finished cotton fabric. Cellulose 21:2063–2072. doi: 10.1007/s10570-014-0175-9 CrossRefGoogle Scholar
  4. Andou Y, Jeong J-M, Hiki S, Nishida H, Endo T (2009a) Design of nanocomposites by vapor-phase assisted surface polymerization. Macromolecules 42:768–772. doi: 10.1021/ma802453n CrossRefGoogle Scholar
  5. Andou Y, Jeong J-M, Nishida H, Endo T (2009b) Simple procedure for polystyrene-based nanocomposite preparation by vapor-phase-assisted surface polymerization. Macromolecules 42:7930–7935. doi: 10.1021/ma901357p CrossRefGoogle Scholar
  6. Chatterjee DP, Mandal BM (2006) Triblock Thermoplastic elastomers with poly(lauryl methacrylate) as the center block and poly(methyl methacrylate) or poly(tert-butyl methacrylate) as end blocks. Morphology and thermomechanical properties. Macromolecules 39:9192–9200. doi: 10.1021/ma061391q CrossRefGoogle Scholar
  7. Chen F, Zhang D, Yang Q et al (2013) Bioinspired wetting surface via laser microfabrication. ACS Appl Mater Interfaces 5:6777–6792. doi: 10.1021/am401677z CrossRefGoogle Scholar
  8. Chen S, Li X, Li Y, Sun J (2015) Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9:4070–4076. doi: 10.1021/acsnano.5b00121 CrossRefGoogle Scholar
  9. Chu Z, Feng Y, Seeger S (2015) Oil/water separation with selective superantiwetting/superwetting surface materials. Angew Chem Int Ed 54:2328–2338. doi: 10.1002/anie.201405785 CrossRefGoogle Scholar
  10. Conder JM, Hoke RA, Wolf Wd, Russell MH, Buck RC (2008) Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol 42:995–1003. doi: 10.1021/es070895g CrossRefGoogle Scholar
  11. Crick CR, Bear JC, Kafizas A, Parkin IP (2012) Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition. Adv Mater 24:3505–3508. doi: 10.1002/adma.201201239 CrossRefGoogle Scholar
  12. Darmanin T, De Givenchy ET, Amigoni S, Guittard F (2013) Superhydrophobic surfaces by electrochemical processes. Adv Mater 25:1378–1394. doi: 10.1002/adma.201204300 CrossRefGoogle Scholar
  13. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloid Surf B 79:5–18. doi: 10.1016/j.colsurfb.2010.03.029 CrossRefGoogle Scholar
  14. Delebecq E, Pascault J-P, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 113:80–118. doi: 10.1021/cr300195n CrossRefGoogle Scholar
  15. Dong C, Gu Y, Zhong M, Li L, Sezer K, Ma M, Liu W (2011) Fabrication of superhydrophobic Cu surfaces with tunable regular micro and random nano-scale structures by hybrid laser texture and chemical etching. J Mater Process Technol 211:1234–1240. doi: 10.1016/j.jmatprotec.2011.02.007 CrossRefGoogle Scholar
  16. Dyett BP, Wu AH, Lamb RN (2014) Mechanical stability of surface architecture-consequences for superhydrophobicity. ACS Appl Mater Interfaces 6:18380–18394. doi: 10.1021/am505487r CrossRefGoogle Scholar
  17. Hua Z, Yang J, Wang T, Liu G, Zhang G (2013) Transparent surface with reversibly switchable wettability between superhydrophobicity and superhydrophilicity. Langmuir 29:10307–10312. doi: 10.1021/la402584v CrossRefGoogle Scholar
  18. Hwang HS, Kim NH, Lee SG, Lee DY, Cho K, Park I (2011) Facile fabrication of transparent superhydrophobic surfaces by spray deposition. ACS Appl Mater Interfaces 3:2179–2183. doi: 10.1021/am2004575 CrossRefGoogle Scholar
  19. Isquith A, Slesinski R, Matheson D (1988) Genotoxicity studies on selected organosilicon compounds: in vivo assays. Food Chem Toxicol 26:263–266. doi: 10.1016/0278-6915(88)90128-7 CrossRefGoogle Scholar
  20. Kim TH, Ha SH, Jang NS et al (2015) Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design. ACS Appl Mater Interfaces 7:5289–5295. doi: 10.1021/am5086066 CrossRefGoogle Scholar
  21. Lee W, Park BG, Kim DH, Ahn DJ, Park Y, Lee SH, Lee KB (2010) Nanostructure-dependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces: from highly adhesive to self-cleanable. Langmuir 26:1412–1415. doi: 10.1021/la904095x CrossRefGoogle Scholar
  22. Liu H, Feng L, Zhai J, Jiang L, Zhu D (2004) Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir 20:5659–5661. doi: 10.1021/la036280o CrossRefGoogle Scholar
  23. Liu B, He Y, Fan Y, Wang X (2006) Fabricating super-hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting. Macromol Rapid Commun 27:1859–1864. doi: 10.1002/marc.200600492 CrossRefGoogle Scholar
  24. Liu K, Cao M, Fujishima A, Jiang L (2014) Bio-inspired titanium dioxide materials with special wettability and their applications. Chem Rev 114:10044–10094. doi: 10.1021/cr4006796 CrossRefGoogle Scholar
  25. Miao H, Bao F, Cheng L, Shi W (2010) Cotton fabric modification for imparting high water and oil repellency using perfluoroalkyl phosphate acrylate via γ-ray-induced grafting. Radiat Phys Chem 79:786–790. doi: 10.1016/j.radphyschem.2010.01.017 CrossRefGoogle Scholar
  26. Nguyen DD, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci 5:7908–7912. doi: 10.1039/c2ee21848h CrossRefGoogle Scholar
  27. Nystrom D, Lindqvist J, Ostmark E, Hult A, Malmstrom E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun 3594–3596. doi: 10.1039/b607411a
  28. Ottone C, Lamberti A, Fontana M, Cauda V (2014) Wetting behavior of hierarchical oxide nanostructures: TiO2 nanotubes from anodic oxidation decorated with ZnO nanostructures. J Electrochem Soc 161:D484–D488. doi: 10.1149/2.0431410jes CrossRefGoogle Scholar
  29. Periolatto M, Ferrero F, Montarsolo A, Mossotti R (2012) Hydrorepellent finishing of cotton fabrics by chemically modified TEOS based nanosol. Cellulose 20:355–364. doi: 10.1007/s10570-012-9821-2 CrossRefGoogle Scholar
  30. Qian B, Shen Z (2005) Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir 21:9007–9009. doi: 10.1021/la051308c CrossRefGoogle Scholar
  31. Shateri-Khalilabad M, Yazdanshenas ME (2013) One-pot sonochemical synthesis of superhydrophobic organic–inorganic hybrid coatings on cotton cellulose. Cellulose 20:3039–3051. doi: 10.1007/s10570-013-0040-2 CrossRefGoogle Scholar
  32. Shin B, Lee K-R, Moon MW, Kim HY (2012) Extreme water repellency of nanostructured low-surface-energy non-woven fabrics. Soft Matter 8:1817–1823. doi: 10.1039/c1sm06867a CrossRefGoogle Scholar
  33. Shirtcliffe NJ, McHale G, Newton MI (2011) The superhydrophobicity of polymer surfaces: recent developments. J Polym Sci Part B Polym Phys 49:1203–1217. doi: 10.1002/polb.22286 CrossRefGoogle Scholar
  34. Sparks BJ, Hoff EF, Xiong L, Goetz JT, Patton DL (2013) Superhydrophobic hybrid inorganic–organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization. ACS Appl Mater Interfaces 5:1811–1817. doi: 10.1021/am303165e CrossRefGoogle Scholar
  35. Wan SJ, Wang L, Xu XJ, Zhao CH, Liu XD (2014) Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface. Soft Matter 10:903–910. doi: 10.1039/C3SM52434E CrossRefGoogle Scholar
  36. Wang H, Zhou H, Gestos A, Fang J, Lin T (2013) Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Appl Mater Interfaces 5:10221–10226. doi: 10.1021/am4029679 CrossRefGoogle Scholar
  37. Wang L, Xi GH, Wan SJ, Zhao CH, Liu XD (2014) Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate. Cellulose 21:2983–2994. doi: 10.1007/s10570-014-0275-6 CrossRefGoogle Scholar
  38. Wang B, Liang W, Guo Z, Liu W (2015a) Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev 44:336–361. doi: 10.1039/c4cs00220b CrossRefGoogle Scholar
  39. Wang J-N, Zhang Y-L, Liu Y, Zheng W, Lee LP, Sun H-B (2015b) Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications. Nanoscale 7:7101–7114. doi: 10.1039/c5nr00719d CrossRefGoogle Scholar
  40. Wen L, Tian Y, Jiang L (2015) Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed 54:3387–3399. doi: 10.1002/anie.201409911 CrossRefGoogle Scholar
  41. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994. doi: 10.1021/ie50320a024 CrossRefGoogle Scholar
  42. Wolfs M, Darmanin T, Guittard F (2013) Superhydrophobic fibrous polymers. Polym Rev 53:460–505. doi: 10.1080/15583724.2013.808666 CrossRefGoogle Scholar
  43. Xi G, Xiu Y, Wang L, Liu X (2015) Antimicrobial N-halamine coatings synthesized via vapor-phase assisted polymerization. J Appl Polym Sci 132:41824. doi: 10.1002/app.41824 CrossRefGoogle Scholar
  44. Xu W, Song J, Sun J, Lu Y, Yu Z (2011) Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. ACS Appl Mater Interfaces 3:4404–4414. doi: 10.1021/am2010527 CrossRefGoogle Scholar
  45. Xue CH, Guo XJ, Ma JZ, Jia ST (2015) Fabrication of robust and antifouling superhydrophobic surfaces via surface-initiated atom transfer radical polymerization. ACS Appl Mater Interfaces 7:8251–8259. doi: 10.1021/acsami.5b01426 CrossRefGoogle Scholar
  46. Yang R, Asatekin A, Gleason KK (2012) Design of conformal, substrate-independent surface modification for controlled proteinadsorption by chemical vapor deposition (CVD). Soft Matter 8:31–43. doi: 10.1039/c1sm06334k CrossRefGoogle Scholar
  47. Yao T, Wang C, Lin Q et al (2009) Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles. Nanotechnology 20:065304. doi: 10.1088/0957-4484/20/6/065304 CrossRefGoogle Scholar
  48. Yu M, Wang Z, Liu H et al (2013) Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO(2) nanoparticles covalently immobilized. ACS Appl Mater Interfaces 5:3697–3703. doi: 10.1021/am400304s CrossRefGoogle Scholar
  49. Zhang YL, Xia H, Kim E, Sun HB (2012) Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter 8:11217–11231. doi: 10.1039/c2sm26517f CrossRefGoogle Scholar
  50. Zhou H, Wang H, Niu H, Gestos A, Wang X, Lin T (2012) Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv Mater 24:2409–2412. doi: 10.1002/adma.201200184 CrossRefGoogle Scholar
  51. Zou H, Lin S, Tu Y et al (2013) Simple approach towards fabrication of highly durable and robust superhydrophobic cotton fabric from functional diblock copolymer. J Mater Chem A 1:11246–11260. doi: 10.1039/c3ta12224g CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and TextileZhejiang Sci-Tech UniversityHangzhouChina

Personalised recommendations