, Volume 22, Issue 6, pp 3895–3906 | Cite as

Inhibition of bacterial adhesion on cellulose acetate membranes containing silver nanoparticles

  • Patricia Fernanda Andrade
  • Andreia Fonseca de Faria
  • Fernando Júnior Quites
  • Silvana Ruella Oliveira
  • Oswaldo Luiz Alves
  • Marco Aurélio Zezzi Arruda
  • Maria do Carmo Gonçalves
Original Paper


Membrane fouling is one of the major drawbacks that changes polymeric membrane performance. Biofouling has a series of effects, such as to reduce membrane permeability, to increase energy costs and to decrease membrane lifetime. Cellulose acetate (CA) membranes, containing different amounts of β-cyclodextrin stabilized silver nanoparticles (AgNP-β-CD), were prepared by dispersing the pre-synthesized nanoparticle (28 nm mean diameter) in CA casting solution. These membranes were obtained by phase-inversion process, in order to achieve both antibacterial properties and biofouling resistance. The typical crystal structure of the AgNP-β-CD, before and after being dispersed in CA membranes, was detected by X-ray diffraction. Field emission electron microscopy images showed membranes with finger-like morphology and atomic force microscopy images showed the presence of nanoparticles in the membrane top surface. The results indicated that the presence of AgNP-β-CD did not influence the membrane thermal degradation but increased the water flux through the membrane. The antibacterial activity of the membranes containing AgNP-β-CD (CA-Ag) was evaluated against E. coli and S. aureus using the plate count method. The results showed that almost 100 % of the E. coli and S. aureus viable cells were inhibited after 12 h of contact with CA-Ag membranes. In addition, the CA membranes were able to prevent more than 90 % E. coli biofilm formation. Based on the results, CA membranes prepared with AgNP-β-CD can be potentially applied as anti-biofouling filtration membranes for water treatment and wastewater recovery.


Cellulose acetate membranes Nanocomposite membranes Silver nanoparticles Antibacterial activity 

Supplementary material

10570_2015_752_MOESM1_ESM.doc (7.8 mb)
Supplementary material 1 (DOC 7940 kb)


  1. Andrade PF, de Faria AF, da Silva DS, Bonacin JA, Gonçalves MC (2014) Structural and morphological investigations of β-cyclodextrin-coated silver nanoparticles. Colloids Surf B 118:289–297CrossRefGoogle Scholar
  2. Anitha S, Brabu B, Thiruvadigal DJ, Gopalakrishnan C, Natarajan TS (2012) Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydr Polym 87:1065–1072CrossRefGoogle Scholar
  3. Asatekin A, Kang S, Elimelech M, Mayes AM (2007) Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. J Membr Sci 298:136–146CrossRefGoogle Scholar
  4. Asharani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver. ACS Nano 3:279–290CrossRefGoogle Scholar
  5. Brandão LR, Yoshida IVP, Felisberti MI, Gonçalves MC (2013) Preparation and characterization of cellulose acetate/polysiloxane composites. Cellulose 20:2791–2802CrossRefGoogle Scholar
  6. Chen Z, Deng M, Chen Y, He G, Wu M, Wang J (2004) Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications. J Membr Sci 235:73–86CrossRefGoogle Scholar
  7. Chou WL, Yu DG, Yang MCh (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Adv Technol 16:600–607CrossRefGoogle Scholar
  8. Damm C, Münstedt H, Rösch A (2007) Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 42:6067–6073CrossRefGoogle Scholar
  9. Deng Y, Dang G, Zhou H, Rao X, Chen Ch (2008) Preparation and characterization of polyimide membranes containing Ag nanoparticles in pores distributing on one side. Mater Lett 62:1143–1146CrossRefGoogle Scholar
  10. Durán N, Marcato PD, Conti R, Alves OL, Costa FTM, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959CrossRefGoogle Scholar
  11. Ferrarezi MMF, Rodrigues GV, Felisberti MI, Gonçalves MC (2013) Investigation of cellulose acetate viscoelastic properties in different solvents and microstructure. Eur Polym J 49:2730–2737CrossRefGoogle Scholar
  12. Figueiredo AS, Sánchez-Loredo MG, Maurício A, Pereira MFC, Minhalma M, de Pinho MN (2015) Tailoring of structures and permeation properties of asymmetric nanocomposite cellulose acetate/silver membranes. J Appl Polym Sci 132:1–11CrossRefGoogle Scholar
  13. Idris A, Yet LK (2006) The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. J Membr Sci 280:920–927CrossRefGoogle Scholar
  14. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178CrossRefGoogle Scholar
  15. Kang ST, Subramani A, Hoek EMV, Deshusses MA, Matsumoto MR (2004) Direct observation of biofouling in cross-flow microfiltration: mechanisms of deposition and release. J Membr Sci 244:151–165CrossRefGoogle Scholar
  16. Kendouli S, Khalfallah O, Sobti N, Bensouissi A, Avci A, Eskizeybek V, Achour S (2014) Modification of cellulose acetate nanofibers with PVP/Ag addition. Mater Sci Semicond Process 28:13–19CrossRefGoogle Scholar
  17. Kunst B, Sourirajan S (1974) An approach to the development of cellulose acetate ultrafiltration membranes. J Appl Polym Sci 18:3423–3434CrossRefGoogle Scholar
  18. Kuttowy O, Sourirajan S (1975) Cellulose acetate ultrafiltration membranes. J Appl Polym Sci 19(1975):1449–1460CrossRefGoogle Scholar
  19. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602CrossRefGoogle Scholar
  20. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122CrossRefGoogle Scholar
  21. Liu Y, Rosenfield E, Hu M, Mi B (2013) Direct observation of bacterial deposition on and detachment from nanocomposite membranes embedded with silver nanoparticles. Water Res 47:2949–2958CrossRefGoogle Scholar
  22. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551CrossRefGoogle Scholar
  23. Mauter MS, Wang Y, Okemgbo KC, Osuji CO, Giannelis EP, Elimelech M (2011) Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl Mater Interfaces 3:2861–2868CrossRefGoogle Scholar
  24. Meng F, Chae SR, Drews A, Kraume M, Shin HS, Yang F (2009) Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res 43:1489–1512CrossRefGoogle Scholar
  25. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(277):1–24CrossRefGoogle Scholar
  26. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  27. Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032CrossRefGoogle Scholar
  28. Perera DHN, Nataraj SK, Thomson NM, Sepe A, Hüttner S, Steiner U, Qiblawey H, Sivaniah E (2014) Room-temperature development of thin film composite reverse osmosis membranes from cellulose acetate with antibacterial properties. J Membr Sci 453:212–220CrossRefGoogle Scholar
  29. Qian JW, An QF, Wang LN, Zhang L, Shen L (2005) Influence of the dilute-solution properties of cellulose acetate in solvent mixtures on the morphology and pervaporation performance of their membranes. J Appl Polym Sci 97:1891–1898CrossRefGoogle Scholar
  30. Qin JJ, Li Y, Lee LS, Lee H (2003) Cellulose acetate hollow fiber ultrafiltration membranes made from CA/PVP 360 K/NMP/water. J Membr Sci 218:173–183CrossRefGoogle Scholar
  31. Raghavendra GM, Jayaramudu T, Varaprasad K, Sadiku R, Ray SS, Raju KM (2013) Cellulose–polymer–Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds. Carbohydr Polym 93:553–560CrossRefGoogle Scholar
  32. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342CrossRefGoogle Scholar
  33. Smolders CA, Reuvers AJ, Boom RM, Wienk IM (1992) Microstructures in phase-inversion membranes. Part 1. formation of macrovoids. J Membr Sci 73:259–275CrossRefGoogle Scholar
  34. Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25:1632–1637CrossRefGoogle Scholar
  35. Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434CrossRefGoogle Scholar
  36. Sonawane SH, Terrien A, Figueiredo AS, Gonçalves MC, de Pinho MN (2015) The role of silver nanoparticles on mixed matrix Ag/cellulose acetate asymmetric membranes. Polym Compos. doi:10.1002/pc.23557 Google Scholar
  37. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  38. Srey S, Jahid IK, Ha SD (2013) Biofilm formation in food industries: a food safety concern. Food Control 31:572–585CrossRefGoogle Scholar
  39. Taurozzi JS, Arul H, Bosak VZ, Burban AF, Voice TC, Bruening ML, Tarabara VV (2008) Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. J Membr Sci 325:58–68CrossRefGoogle Scholar
  40. Varsha C, Bajpai SK, Navin C (2010) Investigation of water vapour permeation and antibacterial properties of nano silver loaded cellulose acetate film. Int Food Res J 17:623–639Google Scholar
  41. Zhao D, Feng Q, Lv L, Li J (2011) Fabrication and characterization of cellulose acetate ultrafine fiber containing silver nanoparticles by electrospinning. Adv Mater Res 337:116–119CrossRefGoogle Scholar
  42. Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez PJJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Patricia Fernanda Andrade
    • 1
  • Andreia Fonseca de Faria
    • 1
  • Fernando Júnior Quites
    • 1
  • Silvana Ruella Oliveira
    • 1
  • Oswaldo Luiz Alves
    • 1
  • Marco Aurélio Zezzi Arruda
    • 1
  • Maria do Carmo Gonçalves
    • 1
  1. 1.Institute of ChemistryUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations