Advertisement

Cellulose

, Volume 22, Issue 6, pp 3725–3738 | Cite as

Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions

  • Nishil Mohammed
  • Nathan Grishkewich
  • Richard M. Berry
  • Kam Chiu TamEmail author
Original Paper

Abstract

A new generation of recyclable adsorbents comprising of cellulose nanocrystals and alginate (CNC–ALG) with superior adsorption capacity was developed. Sustainable nanomaterials like cellulose nanocrystals derived from pulp fibres and cellulosic biomass are ideal systems to remove contaminants in our water systems. Their use will reduce our dependence on adsorbents, such as activated carbon that contribute to greenhouse gases production. Adsorption characteristics of CNC–ALG hydrogel beads were evaluated using batch adsorption studies of methylene blue (MB) in aqueous solution. The influence of various parameters, such as contact time, adsorbent dosage, initial dye concentration, pH, temperature, ionic strength, crosslinking time and bead size on the MB adsorption were investigated. Thermodynamic analyses confirmed that the adsorption process is spontaneous and exothermic. The kinetics and mechanism of adsorption were best described by a pseudo-second order kinetic model and intra-particle diffusion model. Equilibrium adsorption data fitted well to the Langmuir adsorption isotherm yielding a maximum adsorption capacity of 256.41 mg/g, which is comparable to activated carbon. We demonstrated that after five adsorption–desorption cycles, the removal efficiency of MB remained at ~97 %, and the CNC–ALG hydrogel beads are effective adsorbents for the removal of organic dyes from wastewaters.

Keywords

Cellulose nanocrystals Alginate Hydrogel beads Adsorption Methylene blue Wastewater treatment 

Supplementary material

10570_2015_747_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2741 kb)

Supplementary material 2 (MP4 15316 kb)

References

  1. Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7:2373. doi: 10.1039/c0sm01172j CrossRefGoogle Scholar
  2. Abramian L, El-Rassy H (2009) Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chem Eng J 150:403–410. doi: 10.1016/j.cej.2009.01.019 CrossRefGoogle Scholar
  3. Ahuja S (ed) (2009) Handbook of water purity and quality. Elsevier, New YorkGoogle Scholar
  4. Allen SJ, McKay G, Khader KY (1989) Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat. Environ Pollut 56:39–50CrossRefGoogle Scholar
  5. Aravindhan R, Fathima NN, Rao JR, Nair BU (2007) Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads. Colloids Surf A Physicochem Eng Asp 299:232–238. doi: 10.1016/j.colsurfa.2006.11.045 CrossRefGoogle Scholar
  6. Auta M, Hameed BH (2013) Acid modified local clay beads as effective low-cost adsorbent for dynamic adsorption of methylene blue. J Ind Eng Chem 19:1153–1161CrossRefGoogle Scholar
  7. Batmaz R, Mohammed N, Zaman M et al (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665. doi: 10.1007/s10570-014-0168-8 CrossRefGoogle Scholar
  8. Chatterjee S, Chatterjee S, Chatterjee BP, Guha AK (2007) Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: binding mechanism, equilibrium and kinetics. Colloids Surf A Physicochem Eng Asp 299:146–152CrossRefGoogle Scholar
  9. Chavan R (2001) Indian textile industry-environmental issues. Indian J Fibre Text Res 26:11–21Google Scholar
  10. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085. doi: 10.1016/j.biortech.2005.05.001 CrossRefGoogle Scholar
  11. Deng H, Yang L, Tao G, Dai J (2009) Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation–application in methylene blue adsorption from aqueous solution. J Hazard Mater 166:1514–1521. doi: 10.1016/j.jhazmat.2008.12.080 CrossRefGoogle Scholar
  12. Doğan M, Abak H, Alkan M (2008) Biosorption of methylene blue from aqueous solutions by hazelnut shells: equilibrium, parameters and isotherms. Water Air Soil Pollut 192:141–153. doi: 10.1007/s11270-008-9641-z CrossRefGoogle Scholar
  13. Fan J, Shi Z, Min L et al (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1:7433–7443CrossRefGoogle Scholar
  14. Freundlich H (1932) Of the adsorption of gases. Section II. Kinetics and energetics of gas adsorption. Trans Faraday Soc 28:195–201CrossRefGoogle Scholar
  15. Gomes PC, Fontes MPF, da Silva AG et al (2001) Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Sci Soc Am J 65:1115–1121CrossRefGoogle Scholar
  16. Gupta VK, Mohan D, Sharma S, Sharma M (2000) Removal of basic dyes (rhodamine b and methylene blue) from aqueous solutions using bagasse fly ash. Sep Sci Technol 35:2097–2113. doi: 10.1081/SS-100102091 CrossRefGoogle Scholar
  17. Hameed BH, Din ATM, Ahmad AL (2007) Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater 141:819–825. doi: 10.1016/j.jhazmat.2006.07.049 CrossRefGoogle Scholar
  18. Haynes WM (ed) (2011) CRC handbook of chemistry and physics, 92nd edn, 92, Illust. CRC Press, Taylor & Francis, Boca RatonGoogle Scholar
  19. He X, Male KB, Nesterenko PN et al (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces 5:8796–8804. doi: 10.1021/am403222u CrossRefGoogle Scholar
  20. Ho Y, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. doi: 10.1016/S0032-9592(98)00112-5 CrossRefGoogle Scholar
  21. Ho Y, McKay G (2003) Sorption of dyes and copper ions onto biosorbents. Process Biochem 38:1047–1061. doi: 10.1016/S0032-9592(02)00239-X CrossRefGoogle Scholar
  22. Jain A, Gupta V, Bhatnagar A (2003) Utilization of industrial waste products as adsorbents for the removal of dyes. J Hazard Mater 101:31–42. doi: 10.1016/S0304-3894(03)00146-8 CrossRefGoogle Scholar
  23. Jeon YS, Lei J, Kim J-H (2008) Dye adsorption characteristics of alginate/polyaspartate hydrogels. J Ind Eng Chem 14:726–731. doi: 10.1016/j.jiec.2008.07.007 CrossRefGoogle Scholar
  24. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  25. Kurecic M, Smole MS (2012) Polymer nanocomposite hydrogels for water purification. InTech, Croatia Google Scholar
  26. Lagergren S (1898) Zur theorie der sogenannten adsorption gelˆster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 24:1–39Google Scholar
  27. Lagoa R, Rodrigues JR (2009) Kinetic analysis of metal uptake by dry and gel alginate particles. Biochem Eng J 46:320–326. doi: 10.1016/j.bej.2009.06.007 CrossRefGoogle Scholar
  28. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  29. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003 CrossRefGoogle Scholar
  30. Lezehari M, Basly J-P, Baudu M, Bouras O (2010) Alginate encapsulated pillared clays: removal of a neutral/anionic biocide (pentachlorophenol) and a cationic dye (safranine) from aqueous solutions. Colloids Surf A Physicochem Eng Asp 366:88–94. doi: 10.1016/j.colsurfa.2010.05.021 CrossRefGoogle Scholar
  31. Lim S-F, Zheng Y-M, Zou S-W, Chen JP (2009) Removal of copper by calcium alginate encapsulated magnetic sorbent. Chem Eng J 152:509–513. doi: 10.1016/j.cej.2009.05.029 CrossRefGoogle Scholar
  32. Liu L, Wan Y, Xie Y et al (2012) The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem Eng J 187:210–216. doi: 10.1016/j.cej.2012.01.136 CrossRefGoogle Scholar
  33. Mall ID, Srivastava VC, Agarwal NK, Mishra IM (2005) Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids Surf A Physicochem Eng sAsp 264:17–28. doi: 10.1016/j.colsurfa.2005.03.027 CrossRefGoogle Scholar
  34. Maurya NS, Mittal AK, Cornel P, Rother E (2006) Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresour Technol 97:512–521. doi: 10.1016/j.biortech.2005.02.045 CrossRefGoogle Scholar
  35. Métivier-Pignon H, Faur-Brasquet C, Le Cloirec P (2003) Adsorption of dyes onto activated carbon cloths: approach of adsorption mechanisms and coupling of ACC with ultrafiltration to treat coloured wastewaters. Sep Purif Technol 31:3–11CrossRefGoogle Scholar
  36. Ozacar M, Sengil IA (2005) Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresour Technol 96:791–795. doi: 10.1016/j.biortech.2004.07.011 CrossRefGoogle Scholar
  37. Parekh P, Parmar A, Chavda S, Bahadur P (2011) Modified calcium alginate beads with sodium dodecyl sulfate and clay as adsorbent for removal of methylene blue. J Dispers Sci Technol 32:1377–1387. doi: 10.1080/01932691.2010.505113 CrossRefGoogle Scholar
  38. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206. doi: 10.1002/cjce.20554 CrossRefGoogle Scholar
  39. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80. doi: 10.1016/j.jhazmat.2009.12.047 CrossRefGoogle Scholar
  40. Reddy MR, Dunn SJ (1986) Distribution coefficients for nickel and zinc in soils. Environ Pollut Ser B Chem Phys 1:303–313CrossRefGoogle Scholar
  41. Rocher V, Bee A, Siaugue J-M, Cabuil V (2010) Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. J Hazard Mater 178:434–439. doi: 10.1016/j.jhazmat.2010.01.100 CrossRefGoogle Scholar
  42. Saha P, Chowdhury S, Gupta S et al (2010) Assessment on the removal of malachite green using tamarind fruit shell as biosorbent. Clean Soil Air Water 38:437–445. doi: 10.1002/clen.200900234 CrossRefGoogle Scholar
  43. Sharma P, Kaur H, Sharma M, Sahore V (2011) A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environ Monit Assess 183:151–195. doi: 10.1007/s10661-011-1914-0 CrossRefGoogle Scholar
  44. Sun L, Fugetsu B (2013) Effect of encapsulated graphene oxide on alginate-based bead adsorption to remove acridine orange from aqueous solutions. arXiv:1307.0223 [cond-mat.mtrl-sci], Cornell University LibraryGoogle Scholar
  45. Unuabonah EI, Adebowale KO, Dawodu FA (2008) Equilibrium, kinetic and sorber design studies on the adsorption of Aniline blue dye by sodium tetraborate-modified Kaolinite clay adsorbent. J Hazard Mater 157:397–409. doi: 10.1016/j.jhazmat.2008.01.047 CrossRefGoogle Scholar
  46. Vimonses V, Lei S, Jin B et al (2009) Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chem Eng J 148:354–364. doi: 10.1016/j.cej.2008.09.009 CrossRefGoogle Scholar
  47. Wang W, Zong L, Wang A (2013) A nanoporous hydrogel based on vinyl-functionalized alginate for efficient absorption and removal of Pb2+ ions. Int J Biol Macromol 62:225–231. doi: 10.1016/j.ijbiomac.2013.08.038 CrossRefGoogle Scholar
  48. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng Sanit Eng Div 89:31–60Google Scholar
  49. Yan H, Yang L, Yang Z et al (2012) Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions. J Hazard Mater 229–230:371–380. doi: 10.1016/j.jhazmat.2012.06.014 CrossRefGoogle Scholar
  50. Yang X, Bakaic E, Hoare T, Cranston ED (2013) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules 14:4447–4455. doi: 10.1021/bm401364z CrossRefGoogle Scholar
  51. You S, Cheng S, Yan H (2009) The impact of textile industry on China’s environment. Int J Fash Des Technol Educ 2:33–43. doi: 10.1080/17543260903055141 CrossRefGoogle Scholar
  52. Youssef ME, Soliman EA, Abu-Saied MA et al (2010) Laboratory studies and numerical modeling of using natural micro beads for environmental applications. Int J Electrochem Sci 5:1887–1897Google Scholar
  53. Yu Y, Zhuang Y-Y, Wang Z-H (2001) Adsorption of water-soluble dye onto functionalized resin. J Colloid Interface Sci 242:288–293. doi: 10.1006/jcis.2001.7780 CrossRefGoogle Scholar
  54. Zhao F, Yu B, Yue Z et al (2007) Preparation of porous chitosan gel beads for copper(II) ion adsorption. J Hazard Mater 147:67–73. doi: 10.1016/j.jhazmat.2006.12.045 CrossRefGoogle Scholar
  55. Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353:116–123. doi: 10.1016/j.jcis.2010.09.035 CrossRefGoogle Scholar
  56. Zhou C, Wu Q, Lei T, Negulescu II (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem Eng J 251:17–24. doi: 10.1016/j.cej.2014.04.034 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Nishil Mohammed
    • 1
  • Nathan Grishkewich
    • 1
  • Richard M. Berry
    • 2
  • Kam Chiu Tam
    • 1
    Email author
  1. 1.Department of Chemical Engineering, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooCanada
  2. 2.CelluForce IncMontrealCanada

Personalised recommendations