, Volume 22, Issue 5, pp 3077–3087 | Cite as

Influence of temperature on the solution rheology of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethyl sulfoxide

  • Fei Lu
  • Lejun Wang
  • Chao Zhang
  • Bowen Cheng
  • Ruigang LiuEmail author
  • Yong HuangEmail author
Original Paper


Rheological properties of cellulose solutions in 1-ethyl-3-methylimidazolium chloride/dimethyl sulfoxide ([Emim]Cl/DMSO, 7/3, w/w) in a wide range of concentration and temperature were investigated. The viscosity of cellulose/[Emim]Cl/DMSO solution agrees well with the complex viscosity suggesting Cox–Merz law is valid for the solution. The viscosity contributed by cellulose (η 0η s ) and cellulose concentration (c) scales as (η 0η s )~c n with n in the range of 2.00–1.57 and 4.52–3.79 in semidilute unentangled and semidilute entangled regimes, respectively, in the temperature of 25–100 °C. Intrinsic viscosity of the solutions remains constant at temperature below 60 °C and decreases linearly with the increase of temperature above 60 °C. The activation energy of cellulose/[Emim]Cl/DMSO solution increases with the increase in cellulose concentration. The chain dynamics of cellulose in [Emim]Cl/DMSO follows Zimm model and Rouse model in dilute regime (lower than 0.5 wt%) and semidilute unentangled regime (between 0.5 and 2 wt%), respectively.


Cellulose ILs/DMSO Solution structure Intrinsic viscosity Chain dynamics 



Financial support from the National Natural Science Foundation of China (Grant Nos. 21274154, 51473174, and 51373191) are gratefully appreciated.

Supplementary material

10570_2015_740_MOESM1_ESM.doc (102 kb)
Supplementary material 1 (DOC 102 kb)


  1. Andanson JM, Bordes E, Devemy J, Leroux F, Padua AAH, Gomes MFC (2014) Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem 16:2528–2538. doi: 10.1039/C3gc42244e CrossRefGoogle Scholar
  2. Bird R, Armstrong R, Hassager O (1987) Dynamics of polymeric liquids. Volume 1: fluid mechanics. Wiley, New YorkGoogle Scholar
  3. Cai J, Zhang LN (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548. doi: 10.1002/mabi.200400222 CrossRefGoogle Scholar
  4. Cai J, Zhang LN, Chang CY, Cheng GZ, Chen XM, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8:1572–1579. doi: 10.1002/cphc.200700229 CrossRefGoogle Scholar
  5. Chen X, Zhang YM, Wang HP, Wang SW, Liang SW, Colby RH (2011) Solution rheology of cellulose in 1-butyl-3-methyl imidazolium chloride. J Rheol 55:485–494. doi: 10.1122/1.3553032 CrossRefGoogle Scholar
  6. Colby RH (2010) Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol Acta 49:425–442. doi: 10.1007/s00397-009-0413-5 CrossRefGoogle Scholar
  7. De Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, IthacaGoogle Scholar
  8. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New YorkGoogle Scholar
  9. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524. doi: 10.1016/s0079-6700(01)00025-9 CrossRefGoogle Scholar
  10. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  11. Flory PJ, Spurr OK, Carpenter DK (1958) Intrinsic viscosities of cellulose derivatives. J Polym Sci 27:231–240. doi: 10.1002/pol.1958.1202711519 CrossRefGoogle Scholar
  12. Fort DA, Swatloski RP, Moyna P, Rogers RD, Moyna G (2006) Use of ionic liquids in the study of fruit ripening by high-resolution 13C NMR spectroscopy: ‘green’ solvents meet green bananas. Chem Commun 7:714–716CrossRefGoogle Scholar
  13. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69CrossRefGoogle Scholar
  14. Gericke M, Liebert T, Heinze T (2009a) Interaction of ionic liquids with polysaccharides, 8–synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci 9:343–353CrossRefGoogle Scholar
  15. Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009b) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194. doi: 10.1021/bm801430x CrossRefGoogle Scholar
  16. Gericke M, Liebert T, El Seoud OA, Heinze T (2011) Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol Mater Eng 296:483–493. doi: 10.1002/mame.201000330 CrossRefGoogle Scholar
  17. Glasser WG et al (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:589–598. doi: 10.1007/s10570-012-9691-7 CrossRefGoogle Scholar
  18. Gonsior N, Hetzer M, Kulicke WM, Ritter H (2010) First studies on the influence of methylated beta-cyclodextrin on the rheological behavior of 1-ethyl-3-methyl imidazolium acetate. J Phys Chem B 114:12468–12472. doi: 10.1021/jp1036684 CrossRefGoogle Scholar
  19. Graenacher C (1934) Cellulose solution. U.S. Patent 1943176Google Scholar
  20. Graessley WW (2003) Polymeric liquids and networks: sturcture and properties. Garland Science, New YorkGoogle Scholar
  21. Graessley WW (2008) Polymeric liquids and networks: dynamics and rheology. Garland Science, New YorkGoogle Scholar
  22. Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13:1688–1699. doi: 10.1021/bm300407q CrossRefGoogle Scholar
  23. Heinze T (1998) New ionic polymers by cellulose functionalization. Macromol Chem Phys 199:2341–2364. doi: 10.1002/(sici)1521-3935(19981101)199:11<2341:aid-macp2341>;2-j CrossRefGoogle Scholar
  24. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762. doi: 10.1016/s0079-6700(01)00022-3 CrossRefGoogle Scholar
  25. Huggins ML (1942) The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J Am Chem Soc 64:2716–2718CrossRefGoogle Scholar
  26. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  27. Kosan B, Michels C, Meister F (2007) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66. doi: 10.1007/s10570-007-9160-x CrossRefGoogle Scholar
  28. Kosan B, Schwikal K, Meister F (2010) Solution states of cellulose in selected direct dissolution agents. Cellulose 17:495–506. doi: 10.1007/s10570-010-9402-1 CrossRefGoogle Scholar
  29. Kraemer EO (1938) Molecular weights of celluloses and cellulose derivates. Ind Eng Chem 30:1200–1203CrossRefGoogle Scholar
  30. Kuang QL, Zhao JC, Niu YH, Zhang J, Wang ZG (2008) Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes. J Phys Chem B 112:10234–10240. doi: 10.1021/jp804167n CrossRefGoogle Scholar
  31. Lapasin R, Pricl S (1995) Rheology of industrial polysaccharides: theory and applications. Blackie Academic & Professional, LondonCrossRefGoogle Scholar
  32. Le KA, Rudaz C, Budtova T (2014) Phase diagram, solubility limit and hydrodynamic properties of cellulose in binary solvents with ionic liquid. Carbohydr Polym 105:237–243. doi: 10.1016/j.carbpol.2014.01.085 CrossRefGoogle Scholar
  33. Liu RG, Shen YY, Shao HL, Wu CX, Hu XC (2001) An analysis of Lyocell fiber formation as a melt–spinning process. Cellulose 8:13–21. doi: 10.1023/a:1016785410218 CrossRefGoogle Scholar
  34. Lu F, Song J, Cheng BW, Ji XJ, Wang LJ (2013) Viscoelasticity and rheology in the regimes from dilute to concentrated in cellulose 1-ethyl-3-methylimidazolium acetate solutions. Cellulose 20:1343–1352. doi: 10.1007/s10570-013-9885-7 CrossRefGoogle Scholar
  35. Luan YH, Wu J, Zhan MS, Zhang JM, Zhang J, He JS (2013) “One pot” homogeneous synthesis of thermoplastic cellulose acetate-graft-poly(L-lactide) copolymers from unmodified cellulose. Cellulose 20:327–337. doi: 10.1007/s10570-012-9818-x CrossRefGoogle Scholar
  36. Lv YX, Wu J, Zhang JM, Niu YH, Liu CY, He JS, Zhang J (2012) Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions. Polymer 53:2524–2531. doi: 10.1016/j.polymer.2012.03.037 CrossRefGoogle Scholar
  37. Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587. doi: 10.1007/s10570-011-9644-6 CrossRefGoogle Scholar
  38. Pinkert A, Marsh KN, Pang SS, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728. doi: 10.1021/cr9001947 CrossRefGoogle Scholar
  39. Rahatekar SS et al (2009) Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer 50:4577–4583. doi: 10.1016/j.polymer.2009.07.015 CrossRefGoogle Scholar
  40. Ren Q, Wu J, Zhang J, He JS, Guo ML (2003) Synthesis of 1-allyl,3-methylimidazolium-based room temperature ionic liquid and preliminary study of its dissolving cellulose. Acta Polym Sin 3:448–451Google Scholar
  41. Rey-Castro C, Vega LF (2006) Transport properties of the ionic liquid 1-ethyl-3-methylimidazolium chloride from equilibrium molecular dynamics simulation. The effect of temperature. J Phys Chem B 110:14426–14435. doi: 10.1021/jp062885s CrossRefGoogle Scholar
  42. Rinaldi R (2011) Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Commun 47:511–513. doi: 10.1039/c0cc02421j CrossRefGoogle Scholar
  43. Rubinstein M, Colby R (2003) Polymers physics. Oxford University Press, New YorkGoogle Scholar
  44. Rudaz C, Budtova T (2013) Rheological and hydrodynamic properties of cellulose acetate/ionic liquid solutions. Carbohydr Polym 92:1966–1971CrossRefGoogle Scholar
  45. Saalwächter K, Burchard W, Klüfers P, Kettenbach G, Mayer P, Klemm D, Dugarmaa S (2000) Cellulose solutions in water containing metal complexes. Macromolecules 33:4094–4107CrossRefGoogle Scholar
  46. Saba H, Yongbo Y, Jianning W, Xiaolin X, Kaijian W, Yumei Z, Huaping W (2015) Effect of dimethylsulfoxide on the viscoelastic properties and sol–gel transition of cellulose/ionic liquid solutions. RSC Adv 5:8318–8322. doi: 10.1039/c4ra14911d CrossRefGoogle Scholar
  47. Sammons RJ, Collier JR, Rials TG, Petrovan S (2008) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. I. Shear rheology. J Appl Polym Sci 110:1175–1181. doi: 10.1002/app.28733 CrossRefGoogle Scholar
  48. Sescousse R, Le KA, Ries ME, Budtova T (2010) Viscosity of cellulose-imidazolium-based ionic liquid solutions. J Phys Chem B 114:7222–7228. doi: 10.1021/jp1024203 CrossRefGoogle Scholar
  49. Song H, Zhang J, Niu Y, Wang Z (2010) Phase transition and rheological behaviors of concentrated cellulose/ionic liquid solutions. J Phys Chem B 114:6006–6013. doi: 10.1021/jp1013863 CrossRefGoogle Scholar
  50. Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel-sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12:1087–1096. doi: 10.1021/bm101426p CrossRefGoogle Scholar
  51. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975. doi: 10.1021/ja025790m CrossRefGoogle Scholar
  52. Turner MB, Spear SK, Holbrey JD, Rogers RD (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 5:1379–1384. doi: 10.1021/bm049748q CrossRefGoogle Scholar
  53. Wang LJ, Gao L, Cheng BW, Ji XJ, Song J, Lu F (2014) Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethylsulfoxide. Carbohydr Polym 110:292–297. doi: 10.1016/j.carbpol.2014.03.091 CrossRefGoogle Scholar
  54. Wu J, Zhang J, Zhang H, He JS, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268. doi: 10.1021/bm034398d CrossRefGoogle Scholar
  55. Xu Y, Shen Q (2006) Dynamic dissolution of persimmon leaves in DMSO and DMAc and the influence of acid-base interactions. Colloid Surf B-Biointerfaces 47:98–101. doi: 10.1016/j.colsurfb.2005.11.027 CrossRefGoogle Scholar
  56. Zhang H, Wu J, Zhang J, He JS (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277. doi: 10.1021/ma0505676 CrossRefGoogle Scholar
  57. Zhang H, Wang ZG, Zhang ZN, Wu J, Zhang J, He HS (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704. doi: 10.1002/adma.200600442 CrossRefGoogle Scholar
  58. Zimm BH (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J Chem Phys 24:269–278CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Sate Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Separation Membranes and Membrane ProcessesTianjin Polytechnic UniversityTianjinChina
  3. 3.National Research Center for Engineering Plastics, Technical Institute of Physics & ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations