Advertisement

Cellulose

, Volume 22, Issue 5, pp 3177–3187 | Cite as

Production of hydroxyapatite–bacterial cellulose nanocomposites from agroindustrial wastes

  • Eden B. Duarte
  • Bruna S. das Chagas
  • Fábia K. Andrade
  • Ana I. S. Brígida
  • Maria F. Borges
  • Celli R. Muniz
  • Men de Sá M. Souza Filho
  • João P. S. Morais
  • Judith P. A. Feitosa
  • Morsyleide F. RosaEmail author
Original Paper

Abstract

In the present work, bionanocomposites based on bacterial cellulose (BC) obtained from alternative sources (cashew juice and sisal liquid waste) and hydroxyapatite (HA) were developed. BC–HA composites were prepared through alternate immersion in CaCl2 and Na2HPO4 solutions. Cellulose was successfully produced from the alternative sources of media without the need for additional supplementation and HA crystals that homogeneously precipitated onto the BC surface. The Ca/P ratio ranged from 1.53 to 1.58, indicating the presence of calcium-deficient HA in the composites; this is a phase similar to biological apatite. After immersion into synthetic body fluid, the HA layer formed on the surface of pure BC and the composites, attesting the material’s bioactivity. Moreover, apatite deposition on the composites was up to three times higher than observed on pure cellulose with no significant desorption of apatite from the composites. These results support that the BC derived from agroindustrial wastes have potential to produce nanocomposites of cellulose/HA for use in bone tissue regeneration.

Keywords

Agave sisalana Anacardium occidentale In vitro test Agribusiness Nanotechnology 

Notes

Acknowledgments

The authors are thankful to the Brazilian Research Agency EMBRAPA and the following laboratories from Federal University of Ceará (UFC): Laboratory of Biomaterials, Laboratory of Characterization of Materials (LACAM), X-rays Laboratory, and Laboratory of Bioinorganic. This research was financially supported by the following fellowships: Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP, Brazil), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil).

References

  1. Alge DL, Goebel WS, Chu TMG (2012) In vitro degradation and cytocompatibility of dicalcium phosphate dihydrate cements prepared using the monocalcium phosphate monohydrate/hydroxyapatite system reveals rapid conversion to HA as a key mechanism. J Biomed Mater Res B Appl Biomater 100B:595–602CrossRefGoogle Scholar
  2. Andrade FK, Pértile RAN, Dourado F, Gama FMP (2010) Bacterial cellulose: properties, production and applications. In: Lejeune A, Deprez T (eds) Cellulose: structure and properties, derivatives and industrial uses. Nova Science Publishers, Hauppage, pp 427–458Google Scholar
  3. Andrade FK, Alexandre N, Amorim I, Gartner F, Maurício AC, Luís AL et al (2012) Studies on the biocompatibility of bacterial cellulose. J Bioact Compat Polym 28:97–112CrossRefGoogle Scholar
  4. Barrère F, Blitterswijk CA, Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed 1:317–332Google Scholar
  5. Barud HS, Ribeiro C, Crespi M, Martines M, Dexpert-Ghys J, Marques R et al (2007) Thermal characterization of bacterial cellulose-phosphate composites membranes. J Therm Anal Calorim 87:815–818CrossRefGoogle Scholar
  6. Barud HS, Assunção RMN, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y et al (2008a) Bacterial cellulose-silica organic-inorganic hybrids. J Sol Gel Sci Technol 46:363–367CrossRefGoogle Scholar
  7. Barud HS, de Araújo Júnior AM, Santos DB, de Assunção RMN, Meireles CS, Cerqueira DA et al (2008b) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471:61–69CrossRefGoogle Scholar
  8. Basu B, Swain SK, Sarkar D (2013) Cryogenically cured hydroxyapatite-gelatin nanobiocomposite for bovine serum albumin protein adsorption and release. RSC Adv 3:14622–14633CrossRefGoogle Scholar
  9. Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179CrossRefGoogle Scholar
  10. Bundela H, Bharadwaj V (2012) Synthesis and characterization of hydroxyapatite poly (vinyl alcohol) based nanocomposites for their perspective use as bone substitutes. Polym Sci Ser A 54:299–309CrossRefGoogle Scholar
  11. Cavka A, Guo X, Shui-Jia T, Winestrand S, Jönsson LJ, Hong F (2013) Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnol Biofuels 6:1–10CrossRefGoogle Scholar
  12. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124Google Scholar
  13. Coleman NJ, Nicholson JW, Awosanya K (2007) A preliminary investigation of the in vitro bioactivity of white Portland cement. Cement Concrete Res 37:1518–1523CrossRefGoogle Scholar
  14. Elliot JC (1994) Structure and chemistry of the apatite and other calcium orthophosphates, 1st edn. Elsevier, AmsterdamGoogle Scholar
  15. Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15:1091–1098CrossRefGoogle Scholar
  16. Fricain JC, Granja PL, Barbosa MA, de Jeso B, Barthe N, Baquey C (2002) Cellulose phosphates as biomaterials. In vivo biocompatibility studies. Biomaterials 23:971–980CrossRefGoogle Scholar
  17. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36:S20–S27CrossRefGoogle Scholar
  18. Gomes FP, Silva NHCS, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD et al (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenerg 55:205–211CrossRefGoogle Scholar
  19. Grande CJ, Torres FG, Gomez CM, Carmen Baño MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615CrossRefGoogle Scholar
  20. He M, Chang C, Peng N, Zhang L (2012) Structure and properties of hydroxyapatite/cellulose nanocomposite films. Carbohydr Polym 87:2512–2518CrossRefGoogle Scholar
  21. Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76A:431–438CrossRefGoogle Scholar
  22. Hestrin S, Schramm M (1954) Synthesis of cellulose by acetobacter-xylinum.2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352CrossRefGoogle Scholar
  23. Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21:1–30CrossRefGoogle Scholar
  24. Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27:4661–4670CrossRefGoogle Scholar
  25. Janicki P, Schmidmaier G (2011) What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury 42:S77–S81CrossRefGoogle Scholar
  26. Kim HW, Knowles JC, Kim HE (2004) Hydroxyapatite/poly(e-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 25:1279–1287CrossRefGoogle Scholar
  27. Landi E, Tampieri A, Celotti G, Sprio S (2000) Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc 20:2377–2387CrossRefGoogle Scholar
  28. Le Guéhennec L, Layrolle P, Daculsi G (2004) A review of bioceramics and fibrin sealant. Eur Cell Mater 8:1–10Google Scholar
  29. Mohamed KR (2012). Biocomposite materials, composites and their applications. In: Prof. Ning H (ed.) InTech, pp 113–146Google Scholar
  30. Moore WR, Graves SE, Bain GI (2001) Synthetic bone graft substitutes. ANZ J Surg 71:354–361CrossRefGoogle Scholar
  31. Morejón-Alonso L, Carrodeguas RG, García-Menocal JAD, Pérez JAA, Manent SM (2007) Effect of sterilization on the properties of CDHA-OCP-β-TCP biomaterial. Mater Res 10:15–20CrossRefGoogle Scholar
  32. Morejón-Alonso L, Carrodeguas RG, García-Menocal JAD (2008) Transformations in CDHA/OCP/β-TCP scaffold during ageing in simulated body fluid at 36.5 °C. J Biomed Mater Res B Appl Biomater 84B:386–393CrossRefGoogle Scholar
  33. Nge TT, Sugiyama J, Bulone V (2010) Bacterial cellulose-based biomimetic composites. In: Elnashar M (ed) Biopolymers. InTech, Rijeka, pp 345–368Google Scholar
  34. Pértile RA, Moreira S, Costa RM, Correia A, Guardao L, Gartner F et al (2012) Bacterial cellulose: long-term biocompatibility studies. J Biomater Sci Polym 23:1339–1354Google Scholar
  35. Rivas B, Moldes AB, Dominguez JM, Parajo JC (2004) Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep liquor for lactic acid production with Lactobacillus rhamnosus. Int J Food Microbiol 97:93–98CrossRefGoogle Scholar
  36. Roveri N, Foresti E, Lelli M, Lesci IG, Marchetti M (2010) Microscopic investigations of synthetic biomimetic hydroxyapatite. Microsc Sci Technol Appl Educ 3:1868–1879Google Scholar
  37. Saska S, Barud HS, Gaspar AMM, Marchetto R, Ribeiro SJL, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:1–8CrossRefGoogle Scholar
  38. Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H et al (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877–885CrossRefGoogle Scholar
  39. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
  40. Suzuki O (2010) Octacalcium phosphate: osteoconductivity and crystal chemistry. Acta Biomater 6:3379–3387CrossRefGoogle Scholar
  41. Swain SK, Sarkar D (2013) Study of BSA protein adsorption/release on hydroxyapatite nanoparticles. Appl Surf Sci 286:99–103CrossRefGoogle Scholar
  42. Uesu NY, Pineda EA, Hechenleitner AA (2000) Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier. Int J Pharm 206:85–96CrossRefGoogle Scholar
  43. Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ et al (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mat Sci Eng C Bio S 27:855–864CrossRefGoogle Scholar
  44. Wang K, Zhou C, Hong Y, Zhang X (2012) A review of protein adsorption on bioceramics. Interface Focus 2:259–277CrossRefGoogle Scholar
  45. Wippermann J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T (2009) Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg 37:592–598CrossRefGoogle Scholar
  46. Wu JM, Liu RH (2013) Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. J Biosci Bioeng 115:284–290CrossRefGoogle Scholar
  47. Zadegan S, Hosainalipour M, Rezaie HR, Ghassai H, Shokrgozar MA (2011) Synthesis and biocompatibility evaluation of cellulose/hydroxyapatite nanocomposite scaffold in 1- n-allyl-3-methylimidazolium chloride. Mater Sci Eng C 31:954–961CrossRefGoogle Scholar
  48. Zhai Y, Cui FZ, Wang Y (2005) Formation of nano-hydroxyapatite on recombinant human-like collagen fibrils. Curr Appl Phys 5:429–432CrossRefGoogle Scholar
  49. Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31:43–49CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Eden B. Duarte
    • 1
  • Bruna S. das Chagas
    • 1
  • Fábia K. Andrade
    • 4
  • Ana I. S. Brígida
    • 2
  • Maria F. Borges
    • 4
  • Celli R. Muniz
    • 4
  • Men de Sá M. Souza Filho
    • 4
  • João P. S. Morais
    • 3
  • Judith P. A. Feitosa
    • 1
  • Morsyleide F. Rosa
    • 4
    Email author
  1. 1.Federal University of CearáFortalezaBrazil
  2. 2.Embrapa Food TechnologyRio de JaneiroBrazil
  3. 3.Embrapa CottonCampina GrandeBrazil
  4. 4.Embrapa Tropical AgroindustryFortalezaBrazil

Personalised recommendations