, Volume 22, Issue 4, pp 2483–2498 | Cite as

Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods

  • Nasim Amiralian
  • Pratheep K. Annamalai
  • Paul Memmott
  • Darren J. MartinEmail author
Original Paper


Triodia pungens is one of the 69 species of an Australian native arid grass which covers approximately 27 % of the Australian landmass. In this study, we report that very long and thin cellulose nanofibrils can readily be isolated from Triodia pungens biomass using unrivalled mild chemical pulping, followed by several mechanical fibrillation methods. After a typical pulping process which includes washing, delignification and bleaching steps, mechanical fibrillation was performed via high pressure homogenization, ultrasonication and high energy ball milling using relatively minimal energy in all approaches. Cellulose nanofibrils with an average diameter of below 10 nm and a length of several microns were obtained. It also has been shown that the nanofibrils obtained from Triodia pungens have a crystallinity index of about 69 %, and a thermal stability of up to 320 °C. The sheets produced from high aspect ratio nanofibrils prepared by high pressure homogenization, also demonstrated a very high work at fracture. By evaluating the deconstruction strategies and the performance of nanofibril sheets, we report that the high-performance cellulose nanofibrils can be processed from arid grass bleached pulp with unusually low energy input.


Spinifex Triodia pungens Nanofibrillated cellulose (NFC) Cellulose nanofibrils (CNF) Homogenisation Ball milling and ultra-sonication 



The authors gratefully acknowledge the financial support from Australian Research Council (under ARC Discovery Grant No. DP0877161). They also acknowledge the Aboriginal collaborator, Dugalunji Aboriginal Corporation in Camooweal for project support, leadership, and the supply of grass. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy and Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland and Dr Isabel Marrow for taking images.


  1. Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665. doi: 10.1016/j.carbpol.2013.08.069 CrossRefGoogle Scholar
  2. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278. doi: 10.1021/Bm700624p CrossRefGoogle Scholar
  3. Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475. doi: 10.1016/j.carbpol.2011.06.034 CrossRefGoogle Scholar
  4. Abraham E et al (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92:1477–1483. doi: 10.1016/j.carbpol.2012.10.056 CrossRefGoogle Scholar
  5. Ago M, Endo T, Hirotsu T (2004) Crystalline transformation of native cellulose from cellulose I to cellulose ID polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163–167. doi: 10.1023/B:CELL.0000025423.32330.fa CrossRefGoogle Scholar
  6. Ahola S, Osterberg M, Laine J (2008a) Cellulose nanofibrils-adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314. doi: 10.1007/s10570-007-9167-3 CrossRefGoogle Scholar
  7. Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008b) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282. doi: 10.1021/bm701317k CrossRefGoogle Scholar
  8. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671. doi: 10.1016/j.biortech.2007.04.029 CrossRefGoogle Scholar
  9. Alila S, Besbes I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259. doi: 10.1016/j.indcrop.2012.04.028 CrossRefGoogle Scholar
  10. Allan GE, Southgate RI (2002) Fire regimes in the spinifex landscapes of Australia. In: Bradstock RA, Williams JE, Gill MA (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge, pp 145–176Google Scholar
  11. Amiralian N, Annamalai PK, Fitzgerald C, Memmott P, Martin DJ (2014) Optimisation of resin extraction from an Australian arid grass ‘Triodia pungens’ and its preliminary evaluation as an anti-termite timber coating. Ind Crops Prod 59:241–247. doi: 10.1016/j.indcrop.2014.04.045 CrossRefGoogle Scholar
  12. Amiralian N, Annamalai PK, Memmott P, Taran E, Schmidt S, Martin DJ (2015) Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia’s arid zone RSC. Advances 5:32124–32132. doi: 10.1039/C5RA02936H Google Scholar
  13. Avolio R, Bonadies I, Capitani D, Errico ME, Gentile G, Avella M (2012) A multitechnique approach to assess the effect of ball milling on cellulose. Carbohydr Polym 87:265–273. doi: 10.1016/j.carbpol.2011.07.047 CrossRefGoogle Scholar
  14. Balaz P (2008) Mechanochemistry in nanoscience and minerals engineering, 1.ed.08th edn. Springer, New YorkGoogle Scholar
  15. Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620. doi: 10.1016/j.eurpolymj.2009.12.025 CrossRefGoogle Scholar
  16. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268. doi: 10.1177/0731684405049864 CrossRefGoogle Scholar
  17. Bhattacharya D, Germinario L, Winter W (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377. doi: 10.1016/j.carbpol.2007.12.005 CrossRefGoogle Scholar
  18. Borrega M, Nieminen K, Sixta H (2011) Effects of hot water extraction in a batch reactor on the delignification of birch wood. Bioresources 6:1890–1903Google Scholar
  19. Bourree G, Herring W, Jack D (2004) Cellulose pulp having increased hemicellulose contentGoogle Scholar
  20. Capadona JR, Shanmuganathan K, Trittschuh S, Seidel S, Rowan SJ, Weder C (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10:712–716. doi: 10.1021/bm8010903 CrossRefGoogle Scholar
  21. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. doi: 10.1515/hf.2005.016
  22. Charreau HL, Foresti M, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80. doi: 10.2174/187221013804484854 CrossRefGoogle Scholar
  23. Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615. doi: 10.1016/j.carbpol.2008.11.030 CrossRefGoogle Scholar
  24. Chen W, Yu H, Liu Y (2011a) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461. doi: 10.1016/j.carbpol.2011.04.061 CrossRefGoogle Scholar
  25. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. doi: 10.1016/j.carbpol.2010.10.040 CrossRefGoogle Scholar
  26. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011c) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. doi: 10.1007/s10570-011-9497-z CrossRefGoogle Scholar
  27. Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115:2756–2762. doi: 10.1002/app.30160 CrossRefGoogle Scholar
  28. Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725. doi: 10.1016/j.carbpol.2010.03.046 CrossRefGoogle Scholar
  29. Cherian BM et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798. doi: 10.1016/j.carbpol.2011.07.009 CrossRefGoogle Scholar
  30. de Morais Teixeira E, Corrêa A, Manzoli A, de Lima Leite F, de Oliveira C, Mattoso L (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606. doi: 10.1007/s10570-010-9403-0 CrossRefGoogle Scholar
  31. Deepa B et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997. doi: 10.1016/j.biortech.2010.09.030 CrossRefGoogle Scholar
  32. Djafari Petroudy SR, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydr Polym 99:311–318. doi: 10.1016/j.carbpol.2013.07.073 CrossRefGoogle Scholar
  33. Dufresne A, Cavaillé J-Y, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194CrossRefGoogle Scholar
  34. Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092CrossRefGoogle Scholar
  35. Ferrer A, Filpponen I, Rodriguez A, Laine J, Rojas OJ (2012a) Valorization of residual empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255. doi: 10.1016/j.biortech.2012.08.108 CrossRefGoogle Scholar
  36. Ferrer A et al (2012b) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193. doi: 10.1007/s10570-012-9788-z CrossRefGoogle Scholar
  37. Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583. doi: 10.1016/j.carbpol.2010.12.029 CrossRefGoogle Scholar
  38. Habibi Y, Vignon M (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185. doi: 10.1007/s10570-007-9179-z CrossRefGoogle Scholar
  39. Hassan M, Mathew A, Hassan E, El-Wakil N, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205. doi: 10.1007/s00226-010-0373-z CrossRefGoogle Scholar
  40. Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824. doi: 10.1002/App.26946 CrossRefGoogle Scholar
  41. Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585. doi: 10.1021/Bm800038n CrossRefGoogle Scholar
  42. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci, Appl Polym Symp 37:797–813Google Scholar
  43. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026. doi: 10.1021/bm701157n CrossRefGoogle Scholar
  44. Junka K, Filpponen I, Johansson L-S, Kontturi E, Rojas OJ, Laine J (2014) A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media. Carbohydr Polym 100:107–115. doi: 10.1016/j.carbpol.2012.11.063 CrossRefGoogle Scholar
  45. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  46. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi: 10.1016/j.carbpol.2012.05.026 CrossRefGoogle Scholar
  47. Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425. doi: 10.1007/s10570-007-9131-2 CrossRefGoogle Scholar
  48. Leschinsky M, Weber KH, Patt R, Sixta H (2009) Formation of insoluble components during autohydrolysis of eucalyptus globulus. Lenzing Ber 87:16–25Google Scholar
  49. Li Q, Renneckar S (2009) Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose 16:1025–1032. doi: 10.1007/s10570-009-9329-6 CrossRefGoogle Scholar
  50. Li L, Lee S, Lee H, Youn H (2011) Hydrogen peroxide bleaching of hardwood kraft pulp with adsobed birch xylan and its effect on paper properties. Bioresources 6:721–726Google Scholar
  51. Li W, Yue JQ, Liu SX (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19:479–485. doi: 10.1016/j.ultsonch.2011.11.007 CrossRefGoogle Scholar
  52. Li M, Wang L-J, Li D, Cheng Y-L, Adhikari B (2014) Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr Polym 102:136–143. doi: 10.1016/j.carbpol.2013.11.021 CrossRefGoogle Scholar
  53. Liimatainen H, Sirviö J, Haapala A, Hormi O, Niinimäki J (2011) Characterization of highly accessible cellulose microfibers generated by wet stirred media milling. Carbohydr Polym 83:2005–2010. doi: 10.1016/j.carbpol.2010.11.007 CrossRefGoogle Scholar
  54. Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766CrossRefGoogle Scholar
  55. Mondal S, Memmott P, Wallis L, Martin D (2012) Physico-thermal properties of spinifex resin bio-polymer. Mater Chem Phys 133:692–699. doi: 10.1016/j.matchemphys.2012.01.058 CrossRefGoogle Scholar
  56. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  57. Morán J, Alvarez V, Cyras V, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. doi: 10.1007/s10570-007-9145-9 CrossRefGoogle Scholar
  58. Osterberg M, Vartiainen J, Lucenius J, Hippi U, Seppala J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interface 5:4640–4647. doi: 10.1021/Am401046x CrossRefGoogle Scholar
  59. Paakko M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi: 10.1021/Bm061215p CrossRefGoogle Scholar
  60. Pettersen RC, Schwandt VH (1991) Wood sugar analysis by anion chromatography. J Wood Chem Technol 11:495–501CrossRefGoogle Scholar
  61. Qing Y, Sabo R, Zhu JY, Agarwal U, Cai ZY, Wu YQ (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234. doi: 10.1016/j.carbpol.2013.04.086 CrossRefGoogle Scholar
  62. Rice B, Westoby M (1999) Regeneration after fire in Triodia R. Br. Aust J Ecol 24:563–572. doi: 10.1046/j.1442-9993.1999.01004.x CrossRefGoogle Scholar
  63. Rondeau-Mouro C, Bouchet B, Pontoire B, Robert P, Mazoyer J, Buléon A (2003) Structural features and potential texturising properties of lemon and maize cellulose microfibrils. Carbohydr Polym 53:241–252. doi: 10.1016/S0144-8617(03)00069-9 CrossRefGoogle Scholar
  64. Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691. doi: 10.1021/bm060154s CrossRefGoogle Scholar
  65. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Biomacromolecules 8:2485CrossRefGoogle Scholar
  66. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2012) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253. doi: 10.1021/bm301674e CrossRefGoogle Scholar
  67. Sèbe G, Ham-Pichavant F, Ibarboure E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578. doi: 10.1021/bm201777j CrossRefGoogle Scholar
  68. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi: 10.1177/004051755902901003 CrossRefGoogle Scholar
  69. Sehaqui H, Allais M, Zhou Q, Berglund LA (2011a) Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Compos Sci Technol 71:382–387. doi: 10.1016/j.compscitech.2010.12.007 CrossRefGoogle Scholar
  70. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011b) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644. doi: 10.1021/bm2008907 CrossRefGoogle Scholar
  71. Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88:772–779. doi: 10.1016/j.carbpol.2012.01.062 CrossRefGoogle Scholar
  72. Siqueira G, Bras J, Dufresne A (2009) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411. doi: 10.1021/la9028595 CrossRefGoogle Scholar
  73. Siqueira G, Bras J, Dufresne A (2010a) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRefGoogle Scholar
  74. Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A (2010b) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158. doi: 10.1007/s10570-010-9449-z CrossRefGoogle Scholar
  75. Siro I, Plackett D, Hedenqvist M, Ankerfors M, Lindstrom T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119:2652–2660. doi: 10.1002/App.32831 CrossRefGoogle Scholar
  76. Song Q, Winter W, Bujanovic B, Amidon T (2014) Nanofibrillated cellulose (NFC): a high-value co-product that improves the economics of cellulosic ethanol production. Energies 7:607–618CrossRefGoogle Scholar
  77. Sonia A, Priya Dasan K (2013) Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydr Polym 92:668–674. doi: 10.1016/j.carbpol.2012.09.015 CrossRefGoogle Scholar
  78. Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2010a) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848. doi: 10.1007/s10570-010-9424-8 CrossRefGoogle Scholar
  79. Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010b) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968. doi: 10.1016/j.biortech.2010.02.104 CrossRefGoogle Scholar
  80. Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111. doi: 10.1007/s10570-011-9533-z CrossRefGoogle Scholar
  81. Stenstad P, Andresen M, Tanem B, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45. doi: 10.1007/s10570-007-9143-y CrossRefGoogle Scholar
  82. Svagan AJ, Samir MASA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563. doi: 10.1021/Bm0703160 CrossRefGoogle Scholar
  83. Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020. doi: 10.1007/s10570-010-9431-9 CrossRefGoogle Scholar
  84. Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int J Biol Macromol 51:228–234. doi: 10.1016/j.ijbiomac.2012.05.016 CrossRefGoogle Scholar
  85. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci, Appl Polym Symp 37:815–827Google Scholar
  86. Uetani K, Yano H (2010) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353. doi: 10.1021/bm101103p CrossRefGoogle Scholar
  87. Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113:1270–1275. doi: 10.1002/app.30072 CrossRefGoogle Scholar
  88. Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527. doi: 10.1016/j.compscitech.2006.12.015 CrossRefGoogle Scholar
  89. Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103. doi: 10.1007/s10443-006-9032-9 CrossRefGoogle Scholar
  90. Wang M et al (2011) Colloidal ionic assembly between anionic native cellulose nanofibrils and cationic block copolymer micelles into biomimetic nanocomposites. Biomacromolecules 12:2074–2081. doi: 10.1021/bm101561m CrossRefGoogle Scholar
  91. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. doi: 10.1016/j.fuel.2006.12.013 CrossRefGoogle Scholar
  92. Yu Y, Wu H (2011) Effect of ball milling on the hydrolysis of microcrystalline cellulose in hot-compressed water. AIChE J 57:793–800. doi: 10.1002/aic.12288 CrossRefGoogle Scholar
  93. Zhang L, Tsuzuki T, Wang X (2010) Preparation and characterization on cellulose nanofibre film material science. Forum 654–656:1760–1763Google Scholar
  94. Zhao HP, Feng XQ, Gao HJ (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett. doi: 10.1063/1.2450666 Google Scholar
  95. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093. doi: 10.1016/j.carbpol.2009.10.045 CrossRefGoogle Scholar
  96. Zuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59. doi: 10.1016/j.carbpol.2008.09.024 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneAustralia
  2. 2.Aboriginal Environments Research Centre (AERC)The University of QueenslandBrisbaneAustralia

Personalised recommendations