, Volume 22, Issue 4, pp 2443–2456 | Cite as

Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes

  • Liqiang JinEmail author
  • Weigong Li
  • Qinghua Xu
  • Qiucun Sun
Original Paper


In this present work, amino-functionalized nanocrystalline cellulose (ANCC) was prepared by a process involving, (1) extraction of nanocrystalline cellulose (NCC) from fully bleached hardwood kraft pulp by sulfuric acid hydrolysis, (2) sodium periodate oxidation of NCC to yield the corresponding C-2/C-3 dialdehyde nanocellulose (DANC) and (3) grafting with ethylenediamine to obtain ANCC through a reductive amination treatment. Properties of DANC and ANCC were characterized by conductometric titration, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction and atomic force microscopy. It was found that the primary amine groups of ANCC (0.77–1.28 mmol g−1) increased with the increase of ethylenediamine dosage. The successful grafting was further evidenced by Kaiser test and FT-IR analysis. Zeta potential measurements showed that ANCCs were amphoteric, and their isoelectric points were between pH of 7–8. Chemical modifications of the cellulose nanowhiskers reduced the crystallinity but the initial cellulose I polymorph was retained. The cross-sectional dimension of nanowhiskers was slightly decreased from about 5–10 to 3–8 nm after the oxidation, and a better dispersibility was observed. ANCC sample was then applied as an adsorbent to remove anionic dyes in aqueous solutions. It demonstrated the maximum removal efficiency at acidic conditions. The acid red GR adsorption on ANCC fitted well with the Langmuir model, with a maximum theoretical adsorption capacity of 555.6 mg g−1. The adsorption of congo red 4BS, acid red GR and reactive light yellow K-4G followed pseudo second order kinetics, indicating a chemisorption nature.


Nanocellulose Periodate oxidation Amino-functionalization Adsorption Anionic dyes 



The authors would like to thank the National Natural Science Foundation of China (Grant No. 31370581), Shandong Provincial Outstanding Youth Scholar Foundation for Scientific Research (Grant Nos. 2009BSB01053 and BS2010CL041), and the funding of Shandong provincial Science and Technology Development Project (Grant No. 13fz02).


  1. Barazzouk S, Daneault C (2012) Amino acid and peptide immobilization on oxidized nanocellulose: spectroscopic characterization. Nanomaterials 2:187–205. doi: 10.3390/nano2020187 CrossRefGoogle Scholar
  2. Bhattacharyya R, Ray SK (2015) Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chem Eng J 260:269–283. doi: 10.1016/j.cej.2014.08.030 CrossRefGoogle Scholar
  3. Cheng YM, Lu JT, Liu SL, Zhao P, Lu GZ, Chen JH (2014) The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr Polym 107:57–64. doi: 10.1016/j.carbpol.2014.02.034 CrossRefGoogle Scholar
  4. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085. doi: 10.1016/j.biortech.2005.05.001 CrossRefGoogle Scholar
  5. Dash R, Ragauskas AJ (2012) Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Adv 2:3403–3409. doi: 10.1039/c2ra01071b CrossRefGoogle Scholar
  6. Dash R, Elder T, Ragauskas AJ (2012) Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation. Cellulose 19:2069–2079. doi: 10.1007/s10570-012-9769-2 CrossRefGoogle Scholar
  7. Deng C, Liu J, Zhou W, Zhang YK, Du KF, Zhao ZM (2012) Fabrication of spherical cellulose/carbon tubes hybrid adsorbent anchored with welan gum polysaccharide and its potential in adsorbing methylene blue. Chem Eng J 200–202:452–458. doi: 10.1016/j.cej.2012.06.059 CrossRefGoogle Scholar
  8. Dural MU, Cavas L, Papageorgiou SK, Katsaros FK (2011) Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: kinetics and equilibrium studies. Chem Eng J 168:77–85. doi: 10.1016/j.cej.2010.12.038 CrossRefGoogle Scholar
  9. El-Zahhar AA, Awwad NS, El-Katori EE (2014) Removal of bromophenol blue dye from industrial waste water by synthesizing polymer-clay composite. J Mol Liq 199:454–461. doi: 10.1016/j.molliq.2014.07.034 CrossRefGoogle Scholar
  10. Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11:1060–1066. doi: 10.1021/bm1000247 CrossRefGoogle Scholar
  11. Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583. doi: 10.1016/j.carbpol.2010.12.029 CrossRefGoogle Scholar
  12. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi: 10.1021/cr900339w CrossRefGoogle Scholar
  13. Hemraz UD, Boluk Y, Sunasee R (2013) Amine-decorated nanocrystalline cellulose surfaces: synthesis, characterization, and surface properties. Can J Chem 91:974–981. doi: 10.1139/cjc-2013-0165 CrossRefGoogle Scholar
  14. Ibrahim S, Fatimah I, Ang HM, Wang SB (2010) Adsorption of anionic dyes in aqueous solution using chemically modified barley straw. Water Sci Technol 62:1177–1182. doi: 10.2166/wst.2010.388 CrossRefGoogle Scholar
  15. Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibres for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978. doi: 10.1021/bm070113b CrossRefGoogle Scholar
  16. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. doi: 10.1039/C0NR00583E CrossRefGoogle Scholar
  17. Kalaskar DM, Ulijn RV, Gough JE, Alexander MR, Scurr DJ, Sampson WW, Eichhorn SJ (2010) Characterisation of amino acid modified cellulose surfaces using ToF-SIMS and XPS. Cellulose 17:747–756. doi: 10.1007/s10570-010-9413-y CrossRefGoogle Scholar
  18. Karim Z, Mathew AP, Grahn M, Mouzonb J, Oksmana K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676. doi: 10.1016/j.carbpol.2014.06.048 CrossRefGoogle Scholar
  19. Kayranli B (2011) Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution: isotherm, kinetic and thermodynamic study. Chem Eng J 173:782–791. doi: 10.1016/j.cej.2011.08.051 CrossRefGoogle Scholar
  20. Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492. doi: 10.1021/bm0000337 CrossRefGoogle Scholar
  21. Kim UJ, Kuga S, Wada M (2004) Solubilizaton of dialdehyde cellulose by hot water. Carbohydr Polym 56:7–10. doi: 10.1016/j.carbpol.2003.10.013 CrossRefGoogle Scholar
  22. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  23. Li J, Wan YZ, Li LF, Liang H, Wang JH (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng 29:1635–1642. doi: 10.1016/j.msec.2009.01.006
  24. Lindh J, Carlsson DO, Strømme M, Mihranyan A (2014) Convenient one-pot formation of 2,3-dialdehyde cellulose beads via periodate oxidation of cellulose in water. Biomacromolecules 15:1928–1932. doi: 10.1021/bm5002944 CrossRefGoogle Scholar
  25. Liu WJ, Yao C, Wang MH, Ji JL, Ying L, Fu CY (2012) Kinetics and thermodynamics characteristics of cationic yellow X-GL adsorption on attapulgite/rice hull-based activated carbon nanocomposites. Environ Prog Sustain Energy 32:655–662. doi: 10.1002/ep.11680 CrossRefGoogle Scholar
  26. Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew AP (2014) Biobased nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21:449–461. doi: 10.1007/s10570-013-0139-5 CrossRefGoogle Scholar
  27. Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573. doi: 10.1016/j.carbpol.2011.08.022
  28. Lu TH, Li Q, Chen WH, Yu HP (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138. doi: 10.1016/j.compscitech.2014.01.020 CrossRefGoogle Scholar
  29. Ma H, Burger C, Hsiao BS, Chu B (2012) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromolecules 13:180–186. doi: 10.1021/bm201421g CrossRefGoogle Scholar
  30. Magriotis ZM, Vieira SS, Saczk AA, Santos NAV, Stradiotto NR (2014) Removal of dyes by lignocellulose adsorbents originating from biodiesel production. J Environ Chem Eng 2:2199–2210. doi: 10.1016/j.jece.2014.09.012
  31. Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766. doi: 10.3390/ma6051745 CrossRefGoogle Scholar
  32. Murphy V, Hughes H, McLoughlin P (2008) Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70:1128–1134. doi: 10.1016/j.chemosphere.2007.08.015 CrossRefGoogle Scholar
  33. Musyoka SM, Ngila JC, Moodley B, Petrik LA (2011) Synthesis, characterization, and adsorption kinetic studies of ethylenediamine modified cellulose for removal of Cd and Pb. Anal Lett 44:1925–1936. doi: 10.1080/00032719.2010.539736 CrossRefGoogle Scholar
  34. Nair V, Panigrahy A, Vinu R (2014) Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater. Chem Eng J 254:491–502. doi: 10.1016/j.cej.2014.05.045 CrossRefGoogle Scholar
  35. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FT-IR spectroscopy. Carbohydr Res 340:2376–2391. doi: 10.1016/j.carres.2005.08.007 CrossRefGoogle Scholar
  36. Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppala J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212. doi: 10.1007/s10570-011-9573-4 CrossRefGoogle Scholar
  37. Pan SB, Ragauskas AJ (2014) Enhancement of nanofibrillation of softwood cellulosic fibers by oxidation and sulfonation. Carbohydr Polym 111:514–523. doi:  10.1016/j.carbpol.2014.04.096
  38. Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigment 58:179–196. doi: 10.1016/j.cej.2011.12.013 CrossRefGoogle Scholar
  39. Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055. doi: 10.1039/C2SM27344F CrossRefGoogle Scholar
  40. Piccin JS, Gomes CS, Feris LA, Gutterres M (2012) Kinetics and isotherms of leather dye adsorption by tannery solid waste. Chem Eng J 183:30–38. doi: 10.1016/j.cej.2011.12.013 CrossRefGoogle Scholar
  41. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064. doi: 10.1039/B808639G CrossRefGoogle Scholar
  42. Sabzalian Z, Alam MN, Van de Ven TGM (2014) Hydrophobization and characterization of internally crosslink-reinforced cellulose fibers. Cellulose 21:1381–1393. doi: 10.1007/s10570-014-0178-6 Google Scholar
  43. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342. doi: 10.1007/s11051-005-7523-5 CrossRefGoogle Scholar
  44. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text Res J 29:786–794. doi: 10.1177/004051755902901003 CrossRefGoogle Scholar
  45. Silva LS, Lima LCB, Silva FC, Matos JME, Santos MRMC, Santos LS Jr (2013) Dye anionic sorption in aqueous solution onto a cellulose surface chemically modified with aminoethanethiol. Chem Eng J 218:89–98. doi: 10.1016/j.cej.2012.11.118 CrossRefGoogle Scholar
  46. Sirviö J, Hyväkkö U, Liimatainen H, Niinimäki J, Hormi O (2011) Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr Polym 83:1293–1297. doi: 10.1016/j.carbpol.2010.09.036 CrossRefGoogle Scholar
  47. Sirviö JA, Kolehmainen A, Visanko M, Liimatainen H, Niinimäki J, Hormi OE (2014) Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments. ACS Appl Mater Interfaces 6:14384–14390. doi: 10.1021/am503659j CrossRefGoogle Scholar
  48. Unuabonah EI, Taubert A (2014) Clay-polymer nanocomposites (CPNs): adsorbents of the future for water treatment. Appl Clay Sci 99:83–92. doi: 10.1016/j.clay.2014.06.016 CrossRefGoogle Scholar
  49. Unuabonah EI, El-Khaiary MI, Olu-Owolabi BI, Adebowale KO (2012) Predicting the dynamics and performance of a polymer-clay based composite in a fixed bed system for the removal of lead (II) ion. Chem Eng Res Des 90:1105–1115. doi: 10.1016/j.cherd.2011.11.009 CrossRefGoogle Scholar
  50. Vakili M, Rafatulah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and waste water: a review. Carbohydr Polym 113:115–130. doi: 10.1016/j.carbpol.2014.07.007 CrossRefGoogle Scholar
  51. Vargas AMM, Cazetta AL, Martins AC, Moraes JCG, Garcia EE, Gauze GF, Costa WF, Almeida VC (2012) Kinetic and equilibrium studies: adsorption of food dyes acid yellow 6, acid yellow 23, and acid red 18 on activated carbon from flamboyant pods. Chem Eng J 181–182:243–250. doi: 10.1016/j.cej.2011.11.073 CrossRefGoogle Scholar
  52. Varma AJ, Chavan VB (1995) A study of crystallinity changes in oxidized celluloses. Polym Degrad Stab 49:245–250. doi: 10.1016/0141-3910(95)87006-7 CrossRefGoogle Scholar
  53. Visanko M, Liimatainen H, Sirviö J, Heiskanen J, Hormi O, Niinimäki J (2014) Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physico-chemical characteristics and use as an oil-water stabilizer. Biomacromolecules 15:2769–2775. doi: 10.1021/bm500628g Google Scholar
  54. Wang LJ, Li J (2013) Adsorption of C.I. Reactive red 228 dye from aqueous solution by modified cellulose from flax shive: kinetics, equilibrium, and thermodynamics. Ind Crops Prod 42:153–158. doi: 10.1016/j.indcrop.2012.05.031 CrossRefGoogle Scholar
  55. Way AE, Hsu L, Shanmuganathan K, Weder C, Rowan SJ (2012) pH-Responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006. doi: 10.1021/mz30030061 CrossRefGoogle Scholar
  56. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface J 209:172–184. doi: 10.1016/j.cis.2014.04.002 CrossRefGoogle Scholar
  57. Zaman M, Xiao HN, Chibante F, Ni YH (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89:163–170. doi: 10.1016/j.carbpol.2012.02.066 CrossRefGoogle Scholar
  58. Zhou CJ, Wu QL, Lei TZ, Negulescu II (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem Eng J 251:17–24. doi: 10.1016/j.cej.2014.04.034 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Liqiang Jin
    • 1
    Email author
  • Weigong Li
    • 2
  • Qinghua Xu
    • 2
  • Qiucun Sun
    • 2
  1. 1.School of Chemistry and Pharmaceutical EngineeringQilu University of TechnologyJinanChina
  2. 2.Key Laboratory of Paper Science and Technology of Ministry of EducationQilu University of TechnologyJinanChina

Personalised recommendations