Advertisement

Cellulose

, Volume 22, Issue 3, pp 1789–1798 | Cite as

Physical and bio-composite properties of nanocrystalline cellulose from wood, cotton linters, cattail, and red algae

  • Le Van Hai
  • Ha Neul Son
  • Yung Bum Seo
Original Paper

Abstract

Nanocrystalline celluloses (NCCs) were isolated from different cellulose sources such as wood (softwood and hardwood), non-wood plant (cotton linters and cattail), and marine pulp (red algae) by acid hydrolysis. The NCCs were compared with respect to their dimensions, shapes, degrees of polymerization, crystallinities, thermal stabilities, and effects on the properties of bio-composites. Self-assembly phenomena of the NCCs were observed by electron microscopy. The NCCs from red algae fibers had the longest length (~432 nm) and the highest aspect ratio among the five cellulose sources. The NCCs from cotton linters, cattail fibers, and red algae fibers showed greater thermal degradation resistance than those from wood fibers. The NCCs with much lower molecular weights than their starting materials showed much higher crystalline indices than their starting ones. All-cellulose bio-composites, where the prepared NCCs were used as filaments and the dissolved cellulose as matrix, displayed increased Young’s moduli in proportion to the added amount of the NCCs.

Keywords

Nanocrystalline cellulose Cattail Red algae Self-assembly Bio-composite 

Notes

Acknowledgments

This research was supported from the 2010 R&D program (project number 10035477) funded by the Ministry of Trade, Industry and Energy of the Korean Government.

References

  1. Azizi Samir MAS, Mateos AM, Alloin F, Alloin F, Sanchez JY, Dufresne A (2004) Plasticized nanocomposite polymer electrolytes based on poly (oxyethylene) and cellulose whiskers. Electrochim Acta 49:4667–4677. doi: 10.1016/j.electacta.2004.05.021 CrossRefGoogle Scholar
  2. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169. doi: 10.1016/j.carbpol.2013.01.033 CrossRefGoogle Scholar
  3. Dos Santos RM, Flauzino Neto WP, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714. doi: 10.1016/j.indcrop.2013.08.049 CrossRefGoogle Scholar
  4. Dufresne A (2013) Potential of nanocellulose as a reinforcing phase for polymers. J-For: Vol.2, NO.6, 2, 6–16Google Scholar
  5. Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985. doi: 10.1007/s10570-010-9436-4 CrossRefGoogle Scholar
  6. Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRefGoogle Scholar
  7. Fortunati E, Luzi F, Puglia D, Dominici F, Santulli C, Kenny JM, Torre L (2014) Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. Eur Polym J 56:77–91. doi: 10.1016/j.eurpolymj.2014.03.030 CrossRefGoogle Scholar
  8. Gaspar D, Fernandes SN, de Oliveira AG, Fernandes JG, Grey P, Pontes RV, Martins R, Godinho MH, Fortunato E (2014) Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology 25:094008. doi: 10.1088/0957-4484/25/9/094008 CrossRefGoogle Scholar
  9. Gray DG (2013) Iridescent films from cellulose nanocrystals: chiral nematic or smectic multi-lamellar structure? J-For: Vol 3, N0 2, 3–5Google Scholar
  10. Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM (2013) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr Polym 103:119–125. doi: 10.1016/j.carbpol.2013.11.055 CrossRefGoogle Scholar
  11. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi: 10.1021/cr900339w CrossRefGoogle Scholar
  12. Hai LV, Son HN, Seo YB (2014) Characterization of nanocrystalline cellulose from wood pulp, cotton linter, cattail and red algae fibers. 2014 Proceeding of fall conference of Korea TAPPI, Korea TAPPI, pp13-14Google Scholar
  13. Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. part I : processing and mechanical behavior. Polym Compos 17:4CrossRefGoogle Scholar
  14. Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger M (2012) A critical review of all-cellulose composites. J Mater Sci 47:1171–1186. doi: 10.1007/s10853-011-5774-3 CrossRefGoogle Scholar
  15. Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40. doi: 10.1016/j.carbpol.2013.02.022 CrossRefGoogle Scholar
  16. Kalka S, Huber T, Steinberg J, Baronia K, Mussig J, Staiger MP (2014) Biodegradability of all-cellulose composite laminates. Compos Part A Appl Sci Manuf 59:37–44. doi: 10.1016/j.compositesa.2013.12.012 CrossRefGoogle Scholar
  17. Kim W, Lee S, Seo Y (2010) Sugar extraction by pretreatment and soda pulping from cattail (Typhaceae) (2) pulping characteristics. J Korea Tech Assoc Pulp Pap Ind 42:88–94Google Scholar
  18. Lagerwall JPF, Schütz C, Salajkova M, Noh JH, Park JH, Scalia G, Bergstrom L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:e80. doi: 10.1038/am.2013.69 CrossRefGoogle Scholar
  19. Lahiji RR, Reifenberger R, Raman A, Rudie A, Moon RJ (2008) Characterization of Cellulose Nanocrystal Surfaces by SPM AFM Imaging of CNCs. NSTI-nanotech 2008, www.nsti.org
  20. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi: 10.1016/j.carbpol.2012.05.026 CrossRefGoogle Scholar
  21. Majoinen J, Kontturi E, Ikkala O, Gray DG (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19:1599–1605. doi: 10.1007/s10570-012-9733-1 CrossRefGoogle Scholar
  22. Mccormick CL, Callais PA, Hutchinson BH (1985) Solution studies of cellulose in lithium chloride and N, N- dimethylacetamide. Macromolecules 18:2394–2401CrossRefGoogle Scholar
  23. Moon RJ, Martini A, Nairn J, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi: 10.1039/c0cs00108b CrossRefGoogle Scholar
  24. Morton JH (1996) Viscosity/DP relationships for cellulose dissolved in cuprammonium and cupriethylene diamine solvents. In: Kennedy JF, Phillips GO, Williams PA (eds) The chemistry and processing of wood and plant fibrous materials. Woodhead Publishing Ltd, Cambridge, pp 151–158CrossRefGoogle Scholar
  25. Neto WPF, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind Crops Prod 42:480–488. doi: 10.1016/j.indcrop.2012.06.041 CrossRefGoogle Scholar
  26. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687. doi: 10.1021/ma049300h CrossRefGoogle Scholar
  27. Pandey JK, Chu WS, Kim CS, Lee CS, Ahn SH (2009) Bio-nano reinforcement of environmentally degradable polymer matrix by cellulose whiskers from grass. Compos Part B Eng 40:676–680. doi: 10.1016/j.compositesb.2009.04.013 CrossRefGoogle Scholar
  28. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206. doi: 10.1002/cjce.20554 CrossRefGoogle Scholar
  29. Pullawan T, Wilkinson AN, Zhang LN, Eichhorn SJ (2014) Deformation micromechanics of all-cellulose nanocomposites: comparing matrix and reinforcing components. Carbohydr Polym 100:31–39. doi: 10.1016/j.carbpol.2012.12.066 CrossRefGoogle Scholar
  30. Rafieian F, Shahedi M, Keramat J, Simonsen J (2014) Mechanical, thermal and barrier properties of nano-biocomposite based on gluten and carboxylated cellulose nanocrystals. Ind Crops Prod 53:282–288. doi: 10.1016/j.indcrop.2013.12.016 CrossRefGoogle Scholar
  31. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172CrossRefGoogle Scholar
  32. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92. doi: 10.1016/j.carbpol.2010.01.059 CrossRefGoogle Scholar
  33. Rueda L, Saralegui A, Fernández d’Arlas B, Zhou Q, Berglund LA, Corcuera MA, Mondragon I, Eceiza A (2013) Cellulose nanocrystals/polyurethane nanocomposites. Study from the viewpoint of microphase separated structure. Carbohydr Polym 92:751–757. doi: 10.1016/j.carbpol.2012.09.093 CrossRefGoogle Scholar
  34. Seo YB, Lee YW, Lee CH, You HC (2010) Red algae and their use in papermaking. Bioresour Technol 101:2549–2553. doi: 10.1016/j.biortech.2009.11.088 CrossRefGoogle Scholar
  35. Sim K, Ryu J, Youn HJ (2013) Effect of the number of passes through grinder on the pore characteristics of nanofibrillated cellulose mat. J Korea Tech Assoc Pulp Pap Ind 45:35–41CrossRefGoogle Scholar
  36. Sim K, Youn HJ, Ahn J, Lee J, Lee J, Jo Y (2014) Surface modification of nanofibrillated cellulose by LbL (layer-by-layer) multilayering and its effect on the dewatering ability of suspension. J Korea TAPPI 46:46–55Google Scholar
  37. Siqueira G, Bras J, Follain N, Belbekhouche S, Marais S, Dufresne A (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym 91:711–717. doi: 10.1016/j.carbpol.2012.08.057 CrossRefGoogle Scholar
  38. Sturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061. doi: 10.1021/bm049291k CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Bio-based MaterialsChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations