Advertisement

Cellulose

, Volume 22, Issue 3, pp 1943–1953 | Cite as

Effect of xylan content on mechanical properties in regenerated cellulose/xylan blend films from ionic liquid

  • Johan Sundberg
  • Guillermo Toriz
  • Paul GatenholmEmail author
Original Paper

Abstract

We report of cellulose and arabinoglucuronoxylan (AGX) blend films made from wood polymers extracted from one and the same tree. Blends were prepared by dissolution of wood polymers in 1-ethyl-3-methylimidazolium acetate (EmimAc). Films were produced by casting EmimAc solution followed by coagulation in ethanol. The films were optically transparent, fully amorphous as shown by wide angle X-ray scattering, and free from EmimAc residues as shown by Fourier transform infrared spectroscopy. Mechanical properties were analyzed as a function of water content. The plasticizing effect of water on the films was evidenced by both tensile and dynamical mechanical analysis measurements with humidity scans. Equilibrium moisture content (w/w) was measured at different relative humidities and the proportional water uptake was clearly related to the mechanical properties. We found good mechanical properties independent of the polysaccharide composition and an increased Young’s modulus at low humidities with a maximum at approximately 20 % AGX content. The strengthening effect was removed after leaching the AGX from the films. This study shows potential applications of biopolymer extracted from trees as future packaging.

Keywords

Wood biopolymers films Ionic liquid Mechanical properties Arabinoglucuronoxylan 

Notes

Acknowledgments

The Knut and Alice Wallenberg Foundation is gratefully acknowledged for funding the Wallenberg Wood Science Center. Volodymyr Kuzmenko and Vratislav Langer are acknowledged for their assistance with the XRD analysis.

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

10570_2015_606_MOESM1_ESM.tif (535 kb)
Supplementary material 1 (TIFF 534 kb)
10570_2015_606_MOESM2_ESM.docx (11 kb)
Supplementary material 2 (DOCX 11 kb)

References

  1. Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Principles of cell wall architecture and assembly. Plant cell walls: from chemistry to biology. Garland Science, Taylor and Francis Group, London, pp 227–272Google Scholar
  2. Bosmans TJ, Stépán AM, Toriz G, Renneckar S, Karabulut E, Wågberg L, Gatenholm P (2014) Assembly of debranched xylan from solution and on nanocellulosic surfaces. Biomacromolecules 15:924–930. doi: 10.1021/bm4017868 CrossRefGoogle Scholar
  3. Cao Y, Li H, Zhang Y, Zhang J, He J (2010) Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids. J Appl Polym Sci 116:547–554CrossRefGoogle Scholar
  4. Dammström S, Gatenholm P (2008) Preparation and properties of cellulose/xylan nanocomposites. In: Characterization of the cellulosic cell wall. Blackwell, Oxford, pp 53–63. doi: 10.1002/9780470999714.ch5
  5. El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647CrossRefGoogle Scholar
  6. Escalante A, Gonçalves A, Bodin A, Stepan A, Sandström C, Toriz G, Gatenholm P (2012) Flexible oxygen barrier films from spruce xylan. Carbohydr Polym 87:2381–2387CrossRefGoogle Scholar
  7. Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinGoogle Scholar
  8. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524. doi: 10.1016/S0079-6700(01)00025-9 CrossRefGoogle Scholar
  9. Froix MF, Nelson R (1975) The interaction of water with cellulose from nuclear magnetic resonance relaxation times. Macromolecules 8:726–730CrossRefGoogle Scholar
  10. Froschauer C, Hummel M, Iakovlev M, Roselli A, Schottenberger H, Sixta H (2013) Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules 14:1741–1750. doi: 10.1021/bm400106h CrossRefGoogle Scholar
  11. Gröndahl M, Eriksson L, Gatenholm P (2004) Material properties of plasticized hardwood xylans for potential application as oxygen barrier films. Biomacromolecules 5:1528–1535CrossRefGoogle Scholar
  12. Hauru LKJ, Hummel M, King AWT, Kilpeläinen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13:2896–2905. doi: 10.1021/bm300912y CrossRefGoogle Scholar
  13. Heredia A, Jiménez A, Guillén R (1995) Composition of plant cell walls Zeitschrift für Lebensmittel. Untersuchung und Forschung 200:24–31CrossRefGoogle Scholar
  14. Höije A, Sternemalm E, Heikkinen S, Tenkanen M, Gatenholm P (2008) Material properties of films from enzymatically tailored arabinoxylans. Biomacromolecules 9:2042–2047. doi: 10.1021/bm800290m CrossRefGoogle Scholar
  15. Howsmon JA (1949) Water sorption and the poly-phase structure of cellulose fibers. Text Res J 19:152–162CrossRefGoogle Scholar
  16. Isobe N, Kim U-J, Kimura S, Wada M, Kuga S (2011) Internal surface polarity of regenerated cellulose gel depends on the species used as coagulant. J Colloid Interface Sci 359:194–201CrossRefGoogle Scholar
  17. Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148CrossRefGoogle Scholar
  18. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  19. Köhnke T, Pujolras C, Roubroeks JP, Gatenholm P (2008) The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres. Cellulose 15:537–546CrossRefGoogle Scholar
  20. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66CrossRefGoogle Scholar
  21. Laity P, Glover P, Hay J (2002) Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer 43:5827–5837CrossRefGoogle Scholar
  22. Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides—a complex process. Curr Opin Plant Biol 9:621–630CrossRefGoogle Scholar
  23. Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRefGoogle Scholar
  24. Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola J-P (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32:175–201CrossRefGoogle Scholar
  25. Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40CrossRefGoogle Scholar
  26. Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in) solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRefGoogle Scholar
  27. Nakamura K, Hatakeyama T, Hatakeyama H (1981) Studies on bound water of cellulose by differential scanning calorimetry. Text Res J 51:607–613. doi: 10.1177/004051758105100909 CrossRefGoogle Scholar
  28. Nakamura K, Hatakeyama T, Hatakeyama H (1983) Effect of bound water on tensile properties of native cellulose. Text Res J 53:682–688. doi: 10.1177/004051758305301108 CrossRefGoogle Scholar
  29. Östlund Å, Idström A, Olsson C, Larsson PT, Nordstierna L (2013) Modification of crystallinity and pore size distribution in coagulated cellulose films. Cellulose 20:1657–1667CrossRefGoogle Scholar
  30. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728. doi: 10.1021/cr9001947 CrossRefGoogle Scholar
  31. Ragauskas AJ et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489. doi: 10.1126/science.1114736 CrossRefGoogle Scholar
  32. Reiter W-D (2002) Biosynthesis and properties of the plant cell wall. Curr Opin Plant Biol 5:536–542CrossRefGoogle Scholar
  33. Rogers RD, Seddon KR (2003) Ionic liquids-solvents of the future? Science 302:792–793. doi: 10.1126/science.1090313 CrossRefGoogle Scholar
  34. Salmen N, Back G (1977) The influence of water on the glass transition temperature of cellulose. Tappi 60:137–140Google Scholar
  35. Šimkovic I, Tracz A, Kelnar I, Uhliariková I, Mendichi R (2014) Quaternized and sulfated xylan derivative films. Carbohydr Polym 99:356–364CrossRefGoogle Scholar
  36. Simmons TJ et al (2011) Preparation of synthetic wood composites using ionic liquids. Wood Sci Technol 45:719–733CrossRefGoogle Scholar
  37. Sun Q, Mandalika A, Elder T, Nair SS, Meng X, Huang F, Ragauskas AJ (2014) Nanocomposite film prepared by depositing xylan on cellulose nanowhiskers matrix. Green Chem 16:3458–3462CrossRefGoogle Scholar
  38. Sundberg J, Toriz G, Gatenholm P (2013) Moisture induced plasticity of amorphous cellulose films from ionic liquid. Polymer 54:6555–6560CrossRefGoogle Scholar
  39. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefGoogle Scholar
  40. Theander O, Westerlund EA (1986) Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber. J Agric Food Chem 34:330–336. doi: 10.1021/jf00068a045 CrossRefGoogle Scholar
  41. Timell T (1961) Isolation of galactoglucomannans from the wood of gymnosperms. Tappi 44:88–96Google Scholar
  42. Torimoto T, Tsuda T, Okazaki K, Kuwabata S (2009) New frontiers in materials science opened by ionic liquids. Adv Mater Weinheim 22:1196–1221CrossRefGoogle Scholar
  43. Troshenkowa S, Wawro D (2010) Dissolved state of cellulose in ionic liquids—the impact of water. Fibres Text East Eur 18:80Google Scholar
  44. Turner MB, Spear SK, Holbrey JD, Rogers RD (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 5:1379–1384CrossRefGoogle Scholar
  45. Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122:35–42Google Scholar
  46. Wu RL, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2574CrossRefGoogle Scholar
  47. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRefGoogle Scholar
  48. Zhao Q, Yam RCM, Zhang B, Yang Y, Cheng X, Li RKY (2009) Novel all-cellulose ecocomposites prepared in ionic liquids. Cellulose 16:217–226CrossRefGoogle Scholar
  49. Zhu S et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327CrossRefGoogle Scholar
  50. Zografi G, Kontny M, Yang A, Brenner G (1984) Surface area and water vapor sorption of macrocrystalline cellulose. Int J Pharm 18:99–116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Johan Sundberg
    • 1
    • 2
  • Guillermo Toriz
    • 1
    • 3
  • Paul Gatenholm
    • 1
    • 2
    Email author
  1. 1.Wallenberg Wood Science CenterGöteborgSweden
  2. 2.Biopolymer Technology, Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborgSweden
  3. 3.Department of Wood, Cellulose and Paper ResearchUniversity of GuadalajaraGuadalajaraMexico

Personalised recommendations