Cellulose

, Volume 22, Issue 3, pp 1933–1942 | Cite as

Antimicrobial efficiency evaluation by monitoring potassium efflux for cellulose fibres functionalised by chitosan

  • Lidija Fras-Zemljič
  • Ivan Kosalec
  • Marko Munda
  • Simona Strnad
  • Mitja Kolar
  • Matej Bračič
  • Olivera Šauperl
Original Paper

Abstract

As there is a large gap in the field of fibre microbiological testing, the successful establishment of appropriate techniques is extremely appreciated. Antimicrobials prevent bacterial cell division by damaging the cell wall or affecting the permeabilities of cells’ membranes; they denature proteins, block enzyme activity, prevent cell survival, etc. Intracellular potassium cations are released by the inhibitions of pathogenic micro-organisms. Their quantitative determination enables monitoring of the bactericidal effect regarding antimicrobials. It can be used as an alternative technique for determining the inhibition of micro-organisms in contact with antimicrobial agents. Chitosan, a biodegradable natural polymer, possesses antimicrobial characteristics that depend on a number of factors such as the protonated amino groups’ quantities, degree of acetylation, molecular weight, solvents, etc. Over recent years chitosan has become extremely attractive for fibre functionalization usage. The aim of this paper was to apply spectrophotometry and potentiometry using potassium ion-selective electrode, respectively, for the quantitative analysis of potassium efflux, resulting from the degradation of micro-organisms’ membranes in contact with chitosan itself, as well as with cellulose fibres functionalised by chitosan.

Keywords

Cellulose fibres Chitosan Potassium efflux Antimicrobial activity Potentiometric titration Atomic emission spectrophotometry 

Notes

Acknowledgments

We thank the ARRS office in Slovenia (ARRS project L2-4060) which provided financial support for this work. The authors also acknowledge the financial support from the Ministry of Education, Science and Sport of the Republic of Slovenia through the program P2 0118.

References

  1. Andres MT, Viejo-Diaz M, Fierro JF (2008) Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K+-channel-mediated K+ efflux. Antimicrob Agents 52:4081–4088. doi:10.1128/Aac.01597-07 CrossRefGoogle Scholar
  2. Cakara D, Fras L, Bracic M, Kleinschek KS (2009) Protonation behavior of cotton fabric with irreversibly adsorbed chitosan: a potentiometric titration study. Carbohydr Polym 78:36–40. doi:10.1016/j.carbpol.2009.04.011 CrossRefGoogle Scholar
  3. Coman D, Oancea S, Vrinceanu N (2010) Biofunctionalization of textile materials by antimicrobial treatments: a critical overview. Rom Biotech Lett 15:4913–4921Google Scholar
  4. Daoud WA, Xin JH, Zhang YH (2005) Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf Sci 599:69–75. doi:10.1016/j.susc.2005.09.038 CrossRefGoogle Scholar
  5. Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78:60–72. doi:10.1177/0040517507082332 CrossRefGoogle Scholar
  6. Hammond SM, Kliger BN (1976) Mode of action of polyene antibiotic candicidin—binding factors in wall of Candida-Albicans. Antimicrob Agents Chemother 9:561–568CrossRefGoogle Scholar
  7. Hammond SM, Lambert PA, Kliger BN (1974) Mode of action of polyene antibiotics—induced potassium leakage in Candida-Albicans. J Gen Microbiol 81:325–330CrossRefGoogle Scholar
  8. Hewitt CJ, Franke R, Marx A, Kossmann B, Ottersbach P (2004) A study into the anti-microbial properties of an amino functionalised polymer using multi-parameter flow cytometry. Biotechnol Lett 26:549–557. doi:10.1023/B:Bile.0000021954.82099.A0 CrossRefGoogle Scholar
  9. Johnson B, White RJ, Williamson GM (1978) Factors influencing susceptibility of Candida-Albicans to polyenoic antibiotics nystatin and amphotericin-B. J Gen Microbiol 104:325–333CrossRefGoogle Scholar
  10. Kim HW, Kim BR, Rhee YH (2010) Imparting durable antimicrobial properties to cotton fabrics using alginate-quaternary ammonium complex nanoparticles. Carbohydr Polym 79:1057–1062. doi:10.1016/j.carbpol.2009.10.047 CrossRefGoogle Scholar
  11. Knittel D, Schollmeyer E (2006) Chitosans for permanent antimicrobial finish on textiles. Lenzing Ber 85:124–130Google Scholar
  12. Ozer RR, Hill WC, Rogers ME, Evans M (2010) Development of colorimetric analytical methods to monitor quaternary amine grafted surfaces. J Appl Polym Sci 118:2397–2407. doi:10.1002/App.32221 Google Scholar
  13. Ristic T, Fras Zemljic L, Novak M, Kralj Kuncic M, Sonjak S, Gunde Cimerman N, Strnad S (2011) Antimicrobial efficiency of functionalized cellulose fibers as potential medical textles. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current researchand technological advances. Microbiology book series, 3 edn. Formatex Research Center, Badajoz, p 37–51Google Scholar
  14. Suller MTE, Russell AD (2000) Triclosan and antibiotic resistance in Staphylococcus aureus. J Antimicrob Chemother 46:11–18. doi:10.1093/Jac/46.1.11 CrossRefGoogle Scholar
  15. Swofford HW (2010) An overview of antimicrobial testing for textile applications. Aatcc Rev 10:51–55Google Scholar
  16. Teufel L, Redl B (2006) Impruved methods for the investigation of the interaction between textiles and microorganisms. Lenzing Ber 85:54–60Google Scholar
  17. Wang Q, Jin GB, Fan XR, Zhao XF, Cui L, Wang P (2010) Antibacterial functionalization of wool via mTGase-catalyzed grafting of epsilon-poly-l-lysine. Appl Biochem Biotech 160:2486–2497. doi:10.1007/s12010-009-8708-7 CrossRefGoogle Scholar
  18. Watanabe H, Azuma M, Igarashi K, Ooshima H (2006) Relationship between cell morphology and intracellular potassium concentration in Candida albicans. J Antibiot 59:281–287CrossRefGoogle Scholar
  19. Zemljic LF, Strnad S, Sauperl O, Stana-Kleinschek K (2009) Characterization of amino groups for cotton fibers coated with chitosan. Text Res J 79:219–226. doi:10.1177/0040517508093592 CrossRefGoogle Scholar
  20. Zemljic LF, Sauperl O, But I, Zabret A, Lusicky M (2011) Viscose material functionalized by chitosan as a potential treatment in gynecology. Text Res J 81:1183–1190. doi:10.1177/0040517510397572 CrossRefGoogle Scholar
  21. Zemljic LF, Sauperl O, Kreze T, Strnad S (2013) Characterization of regenerated cellulose fibers antimicrobial functionalized by chitosan. Text Res J 83:185–196. doi:10.1177/0040517512450759 CrossRefGoogle Scholar
  22. Zemljic LF, Volmajer J, Ristic T, Bracic M, Sauperl O, Kreze T (2014) Antimicrobial and antioxidant functionalization of viscose fabric using chitosan-curcumin formulations. Text Res J 84:819–830. doi:10.1177/0040517513512396 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Lidija Fras-Zemljič
    • 1
  • Ivan Kosalec
    • 2
  • Marko Munda
    • 3
  • Simona Strnad
    • 1
  • Mitja Kolar
    • 4
  • Matej Bračič
    • 1
  • Olivera Šauperl
    • 1
  1. 1.Laboratory for Characterization and Processing of Polymers, Institute for the Engineering and Design of MaterialsUniversity of MariborMariborSlovenia
  2. 2.Department of Microbiology, Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia
  3. 3.Konus Konex d.o.o.Slovenske KonjiceSlovenia
  4. 4.Faculty of Chemistry and Chemical EngineeringUniversity of MariborMariborSlovenia

Personalised recommendations