Advertisement

Cellulose

, Volume 22, Issue 3, pp 1485–1493 | Cite as

Alternative hydrogen bond models of cellulose II and IIII based on molecular force-fields and density functional theory

  • Pan Chen
  • Yu Ogawa
  • Yoshiharu NishiyamaEmail author
  • Malin Bergenstråhle-Wohlert
  • Karim Mazeau
Original Paper

Abstract

Alternative hydrogen-bond structures were found for cellulose II and IIII based on molecular dynamics simulations using four force fields and energy optimization based on density functional theory. All the modeling results were in support to the new hydrogen-bonding network. The revised structures of cellulose II and IIII differ with the fiber diffraction models mainly in the orientation of two hydroxyl groups, namely, OH2 and OH6 forming hydrogen-bond chains perpendicular to the cellulose molecule. In the alternative structures, the sense of hydrogen bond is inversed but little difference can be seen in hydrogen bond geometries. The preference of these alternative hydrogen bond structures comes from the local stabilization of hydroxyl groups with respect to the β carbon. On the other hand when simulated fiber diffraction patterns were compared with experimental ones, the current structure of cellulose II with higher energy and the alternative structure of cellulose IIII with lower energy were in better agreement.

Keywords

Molecular dynamics Force-field Density functional theory Neutron diffraction Hydrogen bond 

Notes

Acknowledgments

We thank Dr. Jakob Wohlert for discussion and providing GLYCAM 06 and CHARMM C36 force field parameters in GROMACS format. P. C. thanks funding support from Chinese government to study in France. Y. O. was supported by a Grant-in-aid for JSPS research fellow (23-2362). M. B. W. Thanks the Swedish Foundation for Strategic Research (SSF) for financial support.

Supplementary material

10570_2015_589_MOESM1_ESM.cif (5 kb)
Supplementary material 1 (CIF 5 kb)
10570_2015_589_MOESM2_ESM.cif (6 kb)
Supplementary material 2 (CIF 6 kb)
10570_2015_589_MOESM3_ESM.cif (6 kb)
Supplementary material 3 (CIF 5 kb)
10570_2015_589_MOESM4_ESM.cif (6 kb)
Supplementary material 4 (CIF 5 kb)
10570_2015_589_MOESM5_ESM.docx (896 kb)
Supplementary material 5 (DOCX 895 kb)

References

  1. Allen FH (2002) The chambridge structural database: a quarter of a million crystal structure and rising. Acta Crystallogr Sect B Struct Sci 58:380–388CrossRefGoogle Scholar
  2. Berens PH, Mackay DHJ, White GM, Wilson KR (1983) Thermodynamics and quantum corrections from molecular dynamics for liquid water. J Chem Phys 79:2375–2389CrossRefGoogle Scholar
  3. Bruno IJ, Cole JC, Kessler M, Luo J, Motherwell WDS, Purkis LH, Smith BR, Taylor R (2004) Retrieval of crystallographically-derived molecular geometry information. J Chem Inf Comput Sci 44:2133–2144CrossRefGoogle Scholar
  4. Caleman C, van Maaren PJ, Hong M, Hub JS, Costa LT, van der Spoel D (2012) Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J Chem Theory Comput 8:61–74CrossRefGoogle Scholar
  5. Chanzy H, Henrissat B, Vincendon M, Tanner SF, Belton PSB (1987) Solid state 13C NMR an electron microscopy study on the reversible cellulose I->cellulose III transformation in Valonia. Carbohydr Res 160:1–11CrossRefGoogle Scholar
  6. Chen P, Nishiyama Y, Mazeau K (2012) Torsional entropy at the origin of the reversible temperature-induced phase transition of cellulose. Macromolecules 45:362–368CrossRefGoogle Scholar
  7. Chen P, Nishiyama Y, Mazeau K (2014a) Atomic partial charges and one Lennard-Jones parameter crucial to model cellulose allomorphs. Cellulose 21:2207–2217CrossRefGoogle Scholar
  8. Chen P, Nishiyama Y, Putaux JL, Mazeau K (2014b) Diversity of potential hydrogen bonds in cellulose I revealed by molecular dynamics simulation. Cellulose 21:897–908Google Scholar
  9. Damm W, Frontera A, Tirado-Rives J, Jorgensen WL (1997) OPLS all-atom force field for carbohydrates. J Comput Chem 18:1955–1970CrossRefGoogle Scholar
  10. Gessler K, Krauss N, Steiner T, Betzel C, Sarko A, Saenger W (1995) β-D-cellotetraose hemihydrate as a structural model for cellulose II. An X-ray diffraction study. J Am Chem Soc 117:11397–11406CrossRefGoogle Scholar
  11. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcion M, Dal Dabo I, Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502Google Scholar
  12. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  13. Guvench O, Hatcher E, Venable RM, Pastor RW, MacKerell J, Alexander D (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370CrossRefGoogle Scholar
  14. Hansen HS, Hünenberger PH (2011) A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. J Comput Chem 32:998–1032CrossRefGoogle Scholar
  15. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefGoogle Scholar
  16. Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field carbohydrates. J Comput Chem 29:622–655CrossRefGoogle Scholar
  17. Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946CrossRefGoogle Scholar
  18. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416Google Scholar
  19. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082Google Scholar
  20. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306Google Scholar
  21. Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19:319–336CrossRefGoogle Scholar
  22. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  23. Peterson SW, Levy HA (1957) A single-crystal neutron diffraction study of heavy ice. Acta Cryst 10:70–76CrossRefGoogle Scholar
  24. Raymond S, Heyraud A, Qui DT, Kvick Å, Chanzy H (1995) Crystal and molecular stucture of β-D-cellotetraose hemihydrate as a model of cellulose II. Macromolecules 28:2096–2100CrossRefGoogle Scholar
  25. Saenger W, Betzel C, Hingerty B, Brown GM (1982) Flip-flop hydrogen bonding in a partially disordered system. Nature 296:581–583CrossRefGoogle Scholar
  26. Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Pan Chen
    • 1
  • Yu Ogawa
    • 2
  • Yoshiharu Nishiyama
    • 3
    Email author
  • Malin Bergenstråhle-Wohlert
    • 4
  • Karim Mazeau
    • 3
  1. 1.AICES Graduate School and MST-AVTRWTH Aachen UniversityAachenGermany
  2. 2.CERMAVUniversity Grenoble AlpesGrenobleFrance
  3. 3.CERMAVCNRSGrenobleFrance
  4. 4.Wallenberg Wood Science CenterRoyal Institute of TechnologyStockholmSweden

Personalised recommendations