Cellulose

, Volume 22, Issue 3, pp 1469–1484 | Cite as

Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

  • Libing Zhang
  • Zhou Lu
  • Luis Velarde
  • Li Fu
  • Yunqiao Pu
  • Shi-You Ding
  • Arthur J. Ragauskas
  • Hong-Fei Wang
  • Bin Yang
Original Paper

Abstract

Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.

Keywords

Cellulose Iα Cellulose Iβ Avicel High resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) 

Supplementary material

10570_2015_588_MOESM1_ESM.docx (156 kb)
Table S1 Peak position and relative peak intensity parameters from curve fitting using Lorentzian lineshape profiles (as in Eq. 3 in the main text) of (a) Avicel, (b) cellulose Iα from alga Valoniaventricosa (Glaucocystis (nostochinearum)), and (c) cellulose Iβs from red reef tunicate and (d) Halocynthiaroretzi tunicate within wavelength of 2700–3050 cm−1 and 3200 cm−1–3450 cm−1. (DOCX 156 kb)
10570_2015_588_MOESM2_ESM.docx (277 kb)
Figure S1 (a) Raman spectra of cellulose Iα from alga Valoniaventricosa (Glaucocystis (nostochinearum)) and (b) cellulose Iβ from Halocynthiaroretzi tunicate in the frequency regions of 300 to 1600 cm−1 and 2500 to 3700 cm−1. (DOCX 277 kb)

References

  1. Asher WE, Willard-Schmoe E (2013) Vibrational sum-frequency spectroscopy for trace chemical detection on surfaces at stand-off distances. Appl Spectrosc 67(3):253–260. doi:10.1366/12-06792 CrossRefGoogle Scholar
  2. Atalla RHV, David L (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285. doi:10.1126/science.223.4633.283 CrossRefGoogle Scholar
  3. Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12(7):2434–2439. doi:10.1021/bm200518n CrossRefGoogle Scholar
  4. Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89(3):802–809. doi:10.1016/j.carbpol.2012.04.014 CrossRefGoogle Scholar
  5. Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50(6):989–1000. doi:10.1021/bi101795q CrossRefGoogle Scholar
  6. Ding S-Y, Liu Y-S (2012) Imaging cellulose using atomic force microscopy. In: Himmel ME (ed) Biomass conversion, vol. 908. Methods in Molecular Biology. Humana Press, pp 23–30. doi:10.1007/978-1-61779-956-3_3
  7. Ding S-Y, Xu Q, Ali MK, Baker JO, Bayer EA, Barak Y, Lamed R, Sugiyama J, Rumbles G, Himmel ME (2006) Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. Biotechniques 41(4):435CrossRefGoogle Scholar
  8. Ding S-Y, Zhao S, Zeng Y (2013) Size, shape, and arrangement of native cellulose fibrils in maize cell walls. Cellulose 21(2):863–871. doi:10.1007/s10570-013-0147-5 CrossRefGoogle Scholar
  9. Eisenthal KB (1997) SFG studies of structural phase transitions at air/water interfaces and shg from the surfaces of microscopic centrosymmetric structures in bulk solution. Abstracts of Papers of the American Chemical Society 213:69-COLLGoogle Scholar
  10. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108(47):E1195–E1203. doi:10.1073/pnas.1108942108 CrossRefGoogle Scholar
  11. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRefGoogle Scholar
  12. Hayashi J, Sufoka A, Ohkita J, Watanabe S (1975) The confirmation of existences of cellulose IIII, IIIII, IVI, and IVII by the X-ray method. J Polym Sci Polym Lett Ed 13(1):23–27. doi:10.1002/pol.1975.130130104 CrossRefGoogle Scholar
  13. Henri Chanzy BH (1985) Undirectional degradation of valonia cellulose microcrystals subjected to cellulase action. FEBS Lett 184:285–288. doi:10.1016/0014-5793(85)80623-2 CrossRefGoogle Scholar
  14. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. doi:10.1126/science.1137016 CrossRefGoogle Scholar
  15. Imai T, Sugiyama J, Itoh T, Horii F (1999) Almost pure I(alpha) cellulose in the cell wall of Glaucocystis. J Struct Biol 127(3):248–257CrossRefGoogle Scholar
  16. Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22(7):3168–3172. doi:10.1021/ma00197a045 CrossRefGoogle Scholar
  17. Kafle K, Xi X, Lee CM, Tittmann BR, Cosgrove DJ, Park YB, Kim SH (2013) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21(2):1075–1086. doi:10.1007/s10570-013-0121-2 CrossRefGoogle Scholar
  18. Kafle K, Shi R, Lee CM, Mittal A, Park YB, Sun Y-H, Park S, Chiang V, Kim SH (2014) Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods. Cellulose 21(4):2219–2231. doi:10.1007/s10570-014-0322-3 CrossRefGoogle Scholar
  19. Kim H, Lagutchev A, Dlott DD (2006) Surface and interface spectroscopy of high explosives and binders: HMX and Estane. Propellants Explos Pyrotech 31(2):116–123. doi:10.1002/prep.200600017 CrossRefGoogle Scholar
  20. Kim S, Lee C, Kafle K (2013) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30(12):2127–2141. doi:10.1007/s11814-013-0162-0 CrossRefGoogle Scholar
  21. Kovalenko (2010) Crystalline cellulose structure and hydrogen bonds. Russ Chem Rev 79(3):231–241. doi:10.1070/RC2010v079n03ABEH004065 CrossRefGoogle Scholar
  22. Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488. doi:10.1021/la903111j CrossRefGoogle Scholar
  23. Larsson PTHE, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15:31–40CrossRefGoogle Scholar
  24. Lee CM, Mittal A, Barnette AL, Kafle K, Park YB, Shin H, Johnson DK, Park S, Kim SH (2013a) Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 20(3):991–1000. doi:10.1007/s10570-013-9917-3 CrossRefGoogle Scholar
  25. Lee CM, Mohamed NM, Watts HD, Kubicki JD, Kim SH (2013b) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Ialpha and Ibeta. J Phys Chem B 117(22):6681–6692. doi:10.1021/jp402998s CrossRefGoogle Scholar
  26. Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013c) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Ialpha and Ibeta. J Phys Chem B 117(22):6681–6692. doi:10.1021/jp402998s CrossRefGoogle Scholar
  27. Lee CM, Kafle K, Park YB, Kim SH (2014a) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 16(22):10844–10853. doi:10.1039/c4cp00515e CrossRefGoogle Scholar
  28. Lee CM, Kafle K, Park YB, Kim SH (2014b) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 16(22):10844–10853. doi:10.1039/c4cp00515e CrossRefGoogle Scholar
  29. Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm−1. J Polym Sci 39(135):269–278. doi:10.1002/pol.1959.1203913521 CrossRefGoogle Scholar
  30. Lu R, Gan W, Wu BH, Chen H, Wang HF (2004) Vibrational polarization spectroscopy of CH stretching modes of the methylene group at the vapor/liquid interfaces with sum frequency generation. J Phys Chem B 108(22):7297–7306. doi:10.1021/jp036674o CrossRefGoogle Scholar
  31. Lu R, Gan W, Wu BH, Zhang Z, Guo Y, Wang HF (2005) C–H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (n = 1-8) interfaces. J Phys Chem B 109(29):14118–14129. doi:10.1021/jp051565q CrossRefGoogle Scholar
  32. Lynette M, Daviesa PJH, Newman Roger H (2002) Molecular ordering of cellulose after extraction of polysaccharides from primary cell walls of Arabidopsis thaliana: a solid-state CP/MAS 13C NMR study. Carbohydr Res 337(7):587–593. doi:10.1016/S0008-6215(02)00038-1 CrossRefGoogle Scholar
  33. Ma G, Allen HC (2003) Surface studies of aqueous methanol solutions by vibrational broad bandwidth sum frequency generation spectroscopy. J Phys Chem B 107(26):6343–6349. doi:10.1021/jp027364t CrossRefGoogle Scholar
  34. Mann J, Marrinan HJ (1958) Crystalline modifications of cellulose. Part II. A study with plane-polarized infrared radiation. J Polym Sci 32(125):357–370. doi:10.1002/pol.1958.1203212507 CrossRefGoogle Scholar
  35. Marrinan HJ, Mann J (1956) Infrared spectra of the crystalline modifications of cellulose. J Polym Sci 21(98):301–311. doi:10.1002/pol.1956.120219812 CrossRefGoogle Scholar
  36. Morikawa H, Hayashi R, Senda M (1978) Infrared analysis of pea stem cell walls and oriented structure of matrix polysaccharides in them. Plant Cell Physiol 19(7):1151–1159Google Scholar
  37. Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8(3):1311–1324. doi:10.1002/app.1964.070080322 CrossRefGoogle Scholar
  38. Newman RH, Ha M-A, Melton LD (1994) Solid-state 13C NMR investigation of molecular ordering in the cellulose of apple cell walls. J Agric Food Chem 42(7):1402–1406. doi:10.1021/jf00043a002 CrossRefGoogle Scholar
  39. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082. doi:10.1021/ja0257319 CrossRefGoogle Scholar
  40. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. doi:10.1021/ja037055w CrossRefGoogle Scholar
  41. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi:10.1186/1754-6834-3-10 CrossRefGoogle Scholar
  42. Park YB, Lee CM, Koo BW, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol 163(2):907–913. doi:10.1104/pp.113.225235 CrossRefGoogle Scholar
  43. Park YB, Lee CM, Kafle K, Park S, Cosgrove DJ, Kim SH (2014) Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Biomacromolecules 15(7):2718–2724. doi:10.1021/bm500567v Google Scholar
  44. Paterlini MG, Freedman TB, Nafie LA (1986) Ring current enhanced vibrational circular dichroism in the carbon-hydrogen bond stretching motions of sugars. J Am Chem Soc 108(7):1389–1397. doi:10.1021/ja00267a005 CrossRefGoogle Scholar
  45. Pu Y, Hallac B, Ragauskas AJ (2013) Plant biomass characterization: application of solution- and solid-state NMR spectroscopy. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, New York, pp 369–390. doi:10.1002/9780470975831.ch18
  46. Samuel R, Pu Y, Foston M, Ragauskas AJ (2010) Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment. Biofuels 1(1):85–90CrossRefGoogle Scholar
  47. Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose i crystallinity by means of FT Raman spectroscopy. Cellulose 12(3):223–231. doi:10.1007/s10570-004-3885-6 CrossRefGoogle Scholar
  48. Shen YR (1984) The principles of nonlinear optics. Wiley-Interscience, New YorkGoogle Scholar
  49. Shen YR (1989) Surface-properties probed by 2nd harmonic and sum frequency generation. Nature 337(6207):519–525. doi:10.1038/337519a0 CrossRefGoogle Scholar
  50. Shen YR (1994) Surface spectroscopy by nonlinear optics. Frontiers in laser spectroscopy, vol 120Google Scholar
  51. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306(5705):2206–2211. doi:10.1126/science.1102765 CrossRefGoogle Scholar
  52. Sugiyama J, Chanzy H, Maret G (1992) Orientation of cellulose microcrystals by strong magnetic fields. Macromolecules 25(16):4232–4234. doi:10.1021/ma00042a032 CrossRefGoogle Scholar
  53. Surber E, Lozano A, Lagutchev A, Kim H, Dlott DD (2007) Surface nonlinear vibrational spectroscopy of energetic materials: HMX. J Phys Chem C 111(5):2235–2241. doi:10.1021/jp066801r CrossRefGoogle Scholar
  54. Taniguchi T, Monde K (2007) Vibrational circular dichroism (VCD) studies on disaccharides in the CH region: toward discrimination of the glycosidic linkage position. Org Biomol Chem 5(7):1104–1110. doi:10.1039/B618841A CrossRefGoogle Scholar
  55. Thomas LH, Forsyth VT, Sturcova A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465–476. doi:10.1104/pp.112.206359 CrossRefGoogle Scholar
  56. Tsuboi M (1957) Infrared spectrum and crystal structure of cellulose. J Polym Sci 25(109):159–171. doi:10.1002/pol.1957.1202510904 CrossRefGoogle Scholar
  57. Velarde L, Wang H-F (2013a) Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS). Phys Chem Chem Phys. doi:10.1039/C3CP52577E Google Scholar
  58. Velarde L, Wang HF (2013b) Capturing inhomogeneous broadening of the—CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS). J Chem Phys 139(8):084204. doi:10.1063/1.4818996 CrossRefGoogle Scholar
  59. Velarde L, Wang HF (2013c) Unique determination of the—CN group tilt angle in Langmuir monolayers using sum-frequency polarization null angle and phase. Chem Phys Lett 585:42–48. doi:10.1016/j.cplett.2013.07.052 CrossRefGoogle Scholar
  60. Velarde L, Zhang XY, Lu Z, Joly AG, Wang ZM, Wang HF (2011) Communication: spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: resolving interfacial inhomogeneities of “identical” molecular groups. J Chem Phys 135(24):241102. doi:10.1063/1.3675629 CrossRefGoogle Scholar
  61. Wang H-F, Gan W, Lu R, Rao Y, Wu B-H (2005a) Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int Rev Phys Chem 24(2):191–256. doi:10.1080/01442350500225894 CrossRefGoogle Scholar
  62. Wang H-F, Gan W, Lu R, Rao Y, Wu B-H (2005b) Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int Rev Phys Chem 24(2):191–256. doi:10.1080/01442350500225894 CrossRefGoogle Scholar
  63. Yang B, Dai Z, Ding S-Y, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2(4):421–450. doi:10.4155/bfs.11.116 CrossRefGoogle Scholar
  64. Yoshiharu NSK, Masahisa W, Takeshi O (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30:6395–6397. doi:10.1021/ma970503y CrossRefGoogle Scholar
  65. Zhuang X, Miranda PB, Kim D, Shen YR (1999) Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys Rev B 59(19):12632–12640. doi:10.1103/PhysRevB.59.12632 CrossRefGoogle Scholar
  66. Zugenmaier P (2007) Crystalline cellulose and derivatives: characterization and structures. In: Timell TE, Wimmer R (eds) Wood science. doi:10.1002/bbpc.19850891120

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Libing Zhang
    • 1
  • Zhou Lu
    • 2
    • 5
  • Luis Velarde
    • 2
    • 6
  • Li Fu
    • 2
  • Yunqiao Pu
    • 3
    • 7
  • Shi-You Ding
    • 4
    • 8
  • Arthur J. Ragauskas
    • 3
    • 7
  • Hong-Fei Wang
    • 2
  • Bin Yang
    • 1
  1. 1.Bioproduct Sciences and Engineering Laboratory, Department of Biological Systems EngineeringWashington State UniversityRichlandUSA
  2. 2.William R. Wiley Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandUSA
  3. 3.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  4. 4.Biosciences CenterNational Renewable Energy LaboratoryGoldenUSA
  5. 5.Beijing National Laboratory for Molecular Sciences, Institute of ChemistryThe Chinese Academy of SciencesBeijingChina
  6. 6.Department of ChemistryUniversity at Buffalo, The State University of New YorkBuffaloUSA
  7. 7.Department of Chemical and Biomolecular EngineeringThe University of TennesseeKnoxvilleUSA
  8. 8.Department of Plant BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations