Cellulose

, Volume 22, Issue 2, pp 1027–1038 | Cite as

Examination of biological hotspot hypothesis of primary cell wall using a computational cell wall network model

  • Abdolmadjid Nili
  • Hojae Yi
  • Vincent H. Crespi
  • Virendra M. Puri
Original Paper

Abstract

Computational modeling reveals that a cell wall network whose mechanical integrity is dominated by a small mass fraction of “hotspot” linkers between microfibrils can sit close to a percolation threshold, across which mechanical integrity is very sensitive to the number of hotspots. In the model, the mechanical properties of cell wall fragments consisting of cellulose microfibrils and xyloglucan linkers with different levels of disorder were examined under progressive decimation of the network, modeling enzymatic degradation. The percolation limit so obtained is close to mass fraction of xyloglucan that must be removed to induce creep experimentally. Greater disorder in the interconnectivity of the network raises the number of hotspot linkers per fibril necessary to reach the percolation threshold. To maintain the required mechanical stiffness with a sparse network of hotspot connections, either each xyloglucan linker must be much stiffer than a single polymeric strand or an additional cell wall component, i.e. pectin, must carry substantial load with a sensitive non-linear mechanical response, such as that associated with a glass transition.

Keywords

Cell wall loosening Cell wall mechanics Cellulose–xyloglucan interactions Computational cell wall network model Primary cell wall 

References

  1. Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 17(15):R461. doi:10.1088/0953-8984/17/15/R01 CrossRefGoogle Scholar
  2. Arola S, Malho JM, Laaksonen P, Lille M, Linder MB (2013) The role of hemicellulose in nanofibrillated cellulose networks. Soft Matter 9(4):1319–1326CrossRefGoogle Scholar
  3. Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21(1):203–222CrossRefGoogle Scholar
  4. Beaucage G, Composto R, Stein RS (1993) Ellipsometric study of the glass transition and thermal expansion coefficients of thin polymer films. J Polym Sci Part B Polym Phys 31(3):319–326. doi:10.1002/polb.1993.090310310 CrossRefGoogle Scholar
  5. Binder K, Heermann D (1997) Monte Carlo simulation in statistical physics. Springer, BerlinCrossRefGoogle Scholar
  6. Bootten TJ, Harris PJ, Melton LD, Newman RH (2004) Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan–cellulose interactions in the cell wall. J Exp Bot 55(397):571–583CrossRefGoogle Scholar
  7. Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2:268–278CrossRefGoogle Scholar
  8. Cosgrove DJ (2000a) Expansive growth of plant cell walls. Plant Physiol Biochem 38(1–2):109–124CrossRefGoogle Scholar
  9. Cosgrove DJ (2000b) Loosening of plant cell walls by expansins. Nature 407(6802):321–326CrossRefGoogle Scholar
  10. Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204CrossRefGoogle Scholar
  11. Doblin MS, Pettolino F, Bacic A (2010) Evans review: plant cell walls: the skeleton of the plant world. Funct Plant Biol 37(5):357CrossRefGoogle Scholar
  12. Dyson RJ, Jensen OE (2010) A fibre-reinforced fluid model of anisotropic plant cell growth. J Fluid Mech 655:472–503CrossRefGoogle Scholar
  13. Fujino T, Sone Y, Mitsuishi Y, Itoh T (2000) Characterization of cross-links between cellulose microfibrils, and their occurrence during elongation growth in pea epicotyl. Plant Cell Physiol 41(4):486–494CrossRefGoogle Scholar
  14. Fujita M, Wasteneys GO (2013) A survey of cellulose microfibril patterns in dividing, expanding, and differentiating cells of Arabidopsis thaliana. Protoplasma 251(3):687–698CrossRefGoogle Scholar
  15. Hejnowicz Z, Borowska-Wykrȩt D (2005) Buckling of inner cell wall layers after manipulations to reduce tensile stress: observations and interpretations for stress transmission. Planta 220(3):465–473CrossRefGoogle Scholar
  16. Janmey PA, MacKintosh FC (2014) Cytoplasmic transport: bacteria turn to glass unless kicked. Curr Biol 24:R226–R228CrossRefGoogle Scholar
  17. Kha H, Tuble SC, Kalyanasundaram S, Williamson RE (2010) WallGen, software to construct layered cellulose–hemicellulose networks and predict their small deformation mechanics. Plant Physiol 152(2):774–786CrossRefGoogle Scholar
  18. Li H, Rief M, Oesterhelt F, Gaub HE, Zhang X, Shen J (1999) Single-molecule force spectroscopy on polysaccharides by AFM nanomechanical fingerprint of -(1,4)-linked polysaccharides. Chem Phys Lett 305(3):197–201CrossRefGoogle Scholar
  19. McCann MC, Wells B, Roberts K (1992) Complexity in the spatial localization and length distribution of plant cell-wall matrix polysaccharides. J Microsc 166(1):123–136CrossRefGoogle Scholar
  20. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  21. Morris S, Hanna S, Miles MJ (2004) The self-assembly of plant cell wall components by single-molecule force spectroscopy and Monte Carlo modelling. Nanotechnology 15(9):1296–1301CrossRefGoogle Scholar
  22. Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158(4):1933–1943CrossRefGoogle Scholar
  23. Peaucelle A, Braybrook S, Höfte H (2012) Cell wall mechanics and growth control in plants: the role of pectins revisited. Front Plant Sci 3(June):121Google Scholar
  24. Quesada Cabrera R, Meersman F, McMillan PF, Dmitriev V (2011) Nanomechanical and structural properties of native cellulose under compressive stress. Biomacromolecules 12(6):2178–2183CrossRefGoogle Scholar
  25. Sakurada I, Ito T, Nakamae K (1964) Elastic moduli of polymer crystals for the chain axial direction. Die Makromol Chem 75(1):1–10CrossRefGoogle Scholar
  26. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science (New York, NY) 306(5705):2206–2211CrossRefGoogle Scholar
  27. Suslov D, Verbelen JP (2006) Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls. J Exp Bot 57(10):2183–2192CrossRefGoogle Scholar
  28. Systmes D (2012) Abaqus 6.12 online documentationGoogle Scholar
  29. Wei C, Lintilhac L, Lintilhac P (2006) Loss of stability, pH, and the anisotropic extensibility of Chara cell walls. Planta 223:1058–1067CrossRefGoogle Scholar
  30. Yi H, Puri VM (2012) Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model. Plant Physiol 160(November):1281–1292CrossRefGoogle Scholar
  31. Yi H, Puri VM (2014) Contributions of the mechanical properties of major structural polysaccharides to the stiffness of a cell wall network model. Am J Bot 101:244–254CrossRefGoogle Scholar
  32. Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove DJ (2014) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21(2):853–862CrossRefGoogle Scholar
  33. Zhao Z, Shklyaev OE, Nili A, Mohamed MNA, Kubicki JD, Crespi VH, Zhong L (2013) Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis. J Phys Chem A 117(12):2580–2589. doi:10.1021/jp3089929 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Abdolmadjid Nili
    • 1
  • Hojae Yi
    • 2
  • Vincent H. Crespi
    • 1
  • Virendra M. Puri
    • 2
  1. 1.Department of PhysicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Agricultural and Biological EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations