, Volume 22, Issue 2, pp 1227–1241 | Cite as

Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment

  • Raphael Bardet
  • Charlène Reverdy
  • Naceur Belgacem
  • Ingebjørg Leirset
  • Kristin Syverud
  • Michel Bardet
  • Julien Bras
Original Paper


The aim of this study is to design a nanocellulose based barrier film. For this purpose, cellulose nanofibrils (CNFs) are used as a matrix to create an entangled nanoporous network that is filled with two different nanofillers: nanoclay (reference), i.e. the mineral montmorillonite (MMT) and the bio-based TEMPO-oxidized cellulose nanocrystal (CNC-T), to produce different types of nanocelluloses and their main physical and chemical features were assessed. As expected, films based on neat CNFs exhibit good mechanical performance and excellent barrier properties at low moisture content. The introduction of 32.5 wt% of either nanofiller results in a significant improvement of barrier properties at high moisture content. Finally, thermal treatment of a dried CNF/CNC-T film results in a decrease of the oxygen permeability even at high moisture content (>70 %). This is mainly attributed to the hornification of nanocellulose. A key result of this study is that the oxygen permeability of an all-nanocellulose film in 85 % relative humidity (RH), is similar to CNF film with mineral nanoclay (MMT), i.e. 2.1 instead of 1.7 cm3 µm m−2 day−1 kPa−1, respectively.


Cellulose nanofibril Barrier properties Cellulose nanocrystal Montmorillonite Thermal treatment Nanoclay 



The authors gratefully acknowledge Papeteries du Léman, and the French National Research Agency (ANRT) for financial and material support for the PhD thesis. TekLiCell cluster and region Rhone-Alpes are acknowledged for their financial support to the experimental setups. We would like to thank Francine Roussel (Grenoble Institute of Technology) for her expertise in providing SEM imaging and Stéphane Coindeau for performing XRD analysis. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir Grant Agreement No. ANR-11-LABX-0030) and of the Energies du Future and PolyNat Carnot Institutes. The OTR measurements have been supported by the PFI project NORCEL: The Norwegian Nanocellulose Technology Platform, funded by the Research Council of Norway.


  1. Alexandrescu L, Syverud K, Gatti A, Chinga-Carrasco G (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20:1765–1775CrossRefGoogle Scholar
  2. Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261CrossRefGoogle Scholar
  3. Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15:1–19CrossRefGoogle Scholar
  4. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRefGoogle Scholar
  5. Aulin C, Salazar-Alvarez G, Lindström T (2012) High strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4:6622–6628CrossRefGoogle Scholar
  6. Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRefGoogle Scholar
  7. Chauve G, Bras J (2014) Industrial point of view of nanocellulose materials and their possible applications. In: Oksman K (ed) Handbook of Green Materials. World Scientific, pp 233–252Google Scholar
  8. Chinga-Carrasco G (2011) Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6Google Scholar
  9. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRefGoogle Scholar
  10. Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508CrossRefGoogle Scholar
  11. Guilbert S, Guillaume C, Gontard N (2011) New packaging materials based on renewable resources: properties, applications, and prospects. In: Aguilera JM, Simpson R, Welti-Chanes J, Bermudez-Aguirre D, Barbosa-Canovas G (eds) Food engineering interfaces. Food engineering series. Springer, New York, pp 619–630Google Scholar
  12. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542CrossRefGoogle Scholar
  13. Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687CrossRefGoogle Scholar
  14. Ho TTT, Zimmermann T, Ohr S, Caseri WR (2012) Composites of cationic nanofibrillated cellulose and layered silicates: water vapor barrier and mechanical properties. ACS Appl Mater Interfaces 4:4832–4840CrossRefGoogle Scholar
  15. Hua K, Carlsson DO, Alander E, Lindstrom T, Stromme M, Mihranyan A, Ferraz N (2014) Translational study between structure and biological response of nanocellulose from wood and green algae. RSC Advances 4:2892–2903CrossRefGoogle Scholar
  16. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026CrossRefGoogle Scholar
  17. Johansson C et al (2012) Renewable fibers and bio-based materials for packaging applications—a review of recent developments. Bioresources 7:2506–2552CrossRefGoogle Scholar
  18. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRefGoogle Scholar
  19. Liu A, Berglund LA (2012) Clay nanopaper composites of nacre-like structure based on montmorrilonite and cellulose nanofibers—improvements due to chitosan addition. Carbohydr Polym 87:53–60CrossRefGoogle Scholar
  20. Liu A, Berglund LA (2013) Fire-retardant and ductile clay nanopaper biocomposites based on montmorillonite in matrix of cellulose nanofibers and carboxymethyl cellulose. Eur Polym J 49:940–949CrossRefGoogle Scholar
  21. Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindstrom T, Siro I, Plackett D (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Memb Sci 358:67–75CrossRefGoogle Scholar
  22. Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671CrossRefGoogle Scholar
  23. Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647CrossRefGoogle Scholar
  24. Pääkkö M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRefGoogle Scholar
  25. Pitkänen M, Kangas H, Vartiainen J (2014) Toxicity and Health Issues. In: Oksman K (ed) Handbook of green materials. World Scientific, pp 181–205Google Scholar
  26. Plackett D, Anturi H, Hedenqvist M, Ankerfors M, Gallstedt M, Lindstrom T, Siro I (2010) Physical properties and morphology of films prepared from microfibrillated cellulose and microfibrillated cellulose in combination with amylopectin. J Appl Polym Sci 117:3601–3609Google Scholar
  27. Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118:702–711CrossRefGoogle Scholar
  28. Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134CrossRefGoogle Scholar
  29. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRefGoogle Scholar
  30. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
  31. Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198CrossRefGoogle Scholar
  32. Sharma S, Zhang X, Nair SS, Ragauskas A, Zhu J, Deng Y (2014) Thermally enhanced high performance cellulose nano fibril barrier membranes. RSC Advances 4:45136–45142CrossRefGoogle Scholar
  33. Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849CrossRefGoogle Scholar
  34. Siqueira G, Bras J, Dufresne A (2010) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose, and cellulose nanocrystals. Bioresources 5:727–740Google Scholar
  35. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  36. Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968CrossRefGoogle Scholar
  37. Spoljaric S, Salminen A, Luong ND, Seppälä J (2013) Crosslinked nanofibrillated cellulose: poly (acrylic acid) nanocomposite films; enhanced mechanical performance in aqueous environments. Cellulose 20:2991–3005CrossRefGoogle Scholar
  38. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRefGoogle Scholar
  39. Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84:1033–1038CrossRefGoogle Scholar
  40. Tang XZ, Kumar P, Alavi S, Sandeep KP (2011) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52:426–442CrossRefGoogle Scholar
  41. Tingaut P, Zimmermann T, Lopez-Suevos F (2009) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464CrossRefGoogle Scholar
  42. Wu CN, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932CrossRefGoogle Scholar
  43. Yang CQ, Wang X, Kang I-S (1997) Ester crosslinking of cotton fabric by polymeric carboxylic acids and citric acid. Text Res J 67:334–342Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Raphael Bardet
    • 1
    • 2
  • Charlène Reverdy
    • 1
    • 2
  • Naceur Belgacem
    • 1
    • 2
  • Ingebjørg Leirset
    • 4
  • Kristin Syverud
    • 3
    • 4
  • Michel Bardet
    • 5
    • 6
  • Julien Bras
    • 1
    • 2
  1. 1.LGP2Univ. Grenoble AlpesGrenobleFrance
  2. 2.LGP2CNRSGrenobleFrance
  3. 3.Norwegian University of Science and Technology (NTNU)TrondheimNorway
  4. 4.Paper and Fiber Research Institute (PFI)TrondheimNorway
  5. 5.INACUniv. Grenoble AlpesGrenobleFrance
  6. 6.INAC, SCIBCEAGrenobleFrance

Personalised recommendations