Cellulose

, Volume 22, Issue 2, pp 971–989 | Cite as

Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction

  • Christopher M. Lee
  • Kabindra Kafle
  • David W. Belias
  • Yong Bum Park
  • Richard E. Glick
  • Candace H. Haigler
  • Seong H. Kim
Original Paper

Abstract

The mesoscale packing and crystal structure of cellulose microfibrils as well as temporal changes in cell wall composition and hydration during the development of cotton fibers from two species, Gossypium hirsutum and G. barbadense were studied using vibrational sum frequency generation (SFG), attenuated total refection infrared (ATR-IR), Fourier transform Raman (FT-Raman) spectroscopy and X-ray diffraction (XRD). The developmental stages analyzed (13–60 days post anthesis) included primary wall synthesis, transitional cell wall remodeling, secondary wall thickening via synthesis of nearly pure cellulose, and fiber maturation. ATR-IR and FT-Raman combined with principle component analysis revealed that fibers of both species undergo abrupt changes in the cellulose and matrix polymer contents during the transition to secondary cell wall synthesis. XRD revealed that cellulose crystal size and crystallinity increase similarly over time in both species. SFG analysis of fibers from un-opened bolls, which were stored in water then air dried, showed subtle differences between two species in the mesoscale ordering of cellulose microfibrils in the maturing secondary walls. In the samples of mature fibers dried on the plant after the boll split opened naturally, the difference in SFG spectra between species was negligible. Collectively, the results show that (a) SFG can uniquely reveal differences in cellulose fibril ordering in maturing cotton fibers before boll opening; and (b) illustrate the comparative usefulness of other commonly used spectroscopic analytical methods for cotton fiber analysis.

Keywords

Sum frequency generation Infrared spectroscopy Raman spectroscopy Cotton fiber development Plant cell wall X-ray diffraction 

Supplementary material

10570_2014_535_MOESM1_ESM.doc (412 kb)
Supplementary material 1 (DOC 412 kb)

References

  1. Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr Polym 100:9–16. doi:10.1016/j.carbpol.2013.01.074 CrossRefGoogle Scholar
  2. Agarwal U, Reiner R, Ralph S (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733. doi:10.1007/s10570-010-9420-z CrossRefGoogle Scholar
  3. Arthur J (1990) Cotton. In: Kroschwitz JI (ed) Polymers: fibers and textiles, a compendium. Wiley, New YorkGoogle Scholar
  4. Asay DB, Kim SH (2005) Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J Phys Chem B 109:16760–16763. doi:10.1021/Jp053042o CrossRefGoogle Scholar
  5. Avci U, Pattathil S, Singh B, Brown VL, Hahn MG, Haigler CH (2013) Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan. PLoS One 8:e56315. doi:10.1371/journal.pone.0056315 CrossRefGoogle Scholar
  6. Bahaji A, Li J, Ovecka M, Ezquer I, Muñoz FJ, Baroja-Fernández E, Romero JM, Almagro G, Montero M, Hidalgo M (2011) Arabidopsis thaliana mutants lacking ADP-glucose pyrophosphorylase accumulate starch and wild-type ADP-glucose content: further evidence for the occurrence of important sources, other than ADP-glucose pyrophosphorylase, of ADP-glucose linked to leaf starch biosynthesis. Plant Cell Physiol 52:1162–1176. doi:10.1093/Pcp/Pcr067 CrossRefGoogle Scholar
  7. Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12:2434–2439. doi:10.1021/bm200518n CrossRefGoogle Scholar
  8. Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89:802–809. doi:10.1016/j.carbpol.2012.04.014 CrossRefGoogle Scholar
  9. Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, Roberts AW, Haigler CH (2010) Phylogenetically distinct cellulose synthase genes support secondary wall thickening in arabidopsis shoot trichomes and cotton fiber. J Integr Plant Biol 52:205–220. doi:10.1111/j.1744-7909.2010.00934.x CrossRefGoogle Scholar
  10. Bhatawdekar SP, Sreenivasan S, Balasubramanya R, Sundaram V (1992) Enhanced enzymolysis of never-dried cotton fibers belonging to different species. J Appl Polym Sci 44:243–248CrossRefGoogle Scholar
  11. Ding S-Y, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1060. doi:10.1126/science.1227491 CrossRefGoogle Scholar
  12. Fry SC (1988) The growing plant cell wall: chemical and metabolic analysis. Longman Group Limited, EdinburgGoogle Scholar
  13. Greene PR, Bain CD (2005) Total internal reflection Raman spectroscopy of barley leaf epicuticular waxes in vivo. Colloids Surf B 45:174–180. doi:10.1016/j.colsurfb.2005.08.010 CrossRefGoogle Scholar
  14. Haigler CH (2007) Substrate supply for cellulose synthesis and its stress sensitivity in the cotton fiber. Cellulose: molecular and structural biology. Springer, Berlin, pp 147–168CrossRefGoogle Scholar
  15. Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:104. doi:10.3389/fpls.2012.00104 CrossRefGoogle Scholar
  16. Hartzell-Lawson MM, Hsieh Y-L (2000) Characterizing the noncellulosics in developing cotton fibers. Text Res J 70:810–819. doi:10.1177/004051750007000909 CrossRefGoogle Scholar
  17. Heyn ANJ (1966) The microcrystalline structure of cellulose in cell walls of cotton, ramie, and jute fibers as revealed by negative staining of sections. J Cell Biol 29:181–197. doi:10.1083/jcb.29.2.181 CrossRefGoogle Scholar
  18. Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G (2011) Sum frequency generation microscopy study of cellulose fibers. Appl Spectrosc 65:1254–1259. doi:10.1366/11-06388 CrossRefGoogle Scholar
  19. Hsieh Y-L, Hu X-P, Wang A (1999) Structural development of cotton fibers and linkages to fiber quality. In: Basra AS (ed) Cotton fibers-developmental biology, quality improvement, and textile processing. Haworth PressGoogle Scholar
  20. Hsieh Y-L, Hu X-P, Wang A (2000) Single fiber strength variations of developing cotton fibers—strength and structure of G. hirsutum and G. barbedense. Text Res J 70:682–690. doi:10.1177/004051750007000805 CrossRefGoogle Scholar
  21. Hu XP, Hsieh YL (1996) Crystalline structure of developing cotton fibers. J Polym Sci Part B Polym Phys 34:1451–1459. doi:10.1002/(Sici)1099-0488(199606)34:8<1451:Aid-Polb8>3.0.Co;2-V CrossRefGoogle Scholar
  22. Ingram P, Woods D, Peterlin A, Williams J (1974) Never-dried cotton fibers part I: morphology and transport properties. Text Res J 44:96–106. doi:10.1177/004051757404400203 CrossRefGoogle Scholar
  23. Kafle K, Shi R, Lee C, Mittal A, Park Y, Sun Y-H, Park S, Chiang V, Kim S (2014a) Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods. Cellulose. doi:10.1007/s10570-014-0322-3 Google Scholar
  24. Kafle K, Xi X, Lee CM, Tittmann BR, Cosgrove DJ, Park YB, Kim SH (2014b) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21:1075–1086. doi:10.1007/s10570-013-0121-2 CrossRefGoogle Scholar
  25. Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366. doi:10.1104/pp.010724 CrossRefGoogle Scholar
  26. Kljun A, Benians TA, Goubet F, Meulewaeter F, Knox JP, Blackburn RS (2011) Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes. Biomacromolecules 12:4121–4126. doi:10.1021/Bm201176m CrossRefGoogle Scholar
  27. Kljun A, El-Dessouky HM, Benians TA, Goubet F, Meulewaeter F, Knox JP, Blackburn RS (2014) Analysis of the physical properties of developing cotton fibres. Eur Polym J 51:57–68. doi:10.1016/j.eurpolymj.2013.11.016 CrossRefGoogle Scholar
  28. Kohel R (2000) Cotton germplasm resources and the potential for improved fiber productivity and quality. In: Basra AS (ed) Cotton fibers—developmental biology, quality improvement, and textile processing. Haworth Press, New YorkGoogle Scholar
  29. Kokot S, Czarnik-Matusewicz B, Ozaki Y (2002) Two-dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton–cellulose. Biopolymers 67:456–469. doi:10.1002/bip.10163 CrossRefGoogle Scholar
  30. Kong L, Lee C, Kim SH, Ziegler GR (2014) Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy. J Phys Chem B 118:1775–1783. doi:10.1021/Jp411130n CrossRefGoogle Scholar
  31. Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117:6681–6692. doi:10.1021/jp402998s CrossRefGoogle Scholar
  32. Lee CM, Kafle K, Park YB, Kim SH (2014) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 16:10844–10853. doi:10.1039/C4cp00515e CrossRefGoogle Scholar
  33. Lei L, Zhang T, Strasser R, Lee C, Gonneau M, Mach L, Vernhettes S, Kim SH, Cosgrove D, Li S, Gu Y (2014) The jiaoyao1 mutant is an allel of korrigan1 that abolishes endoglucanase activity and affects the organization of both cellulose microfibrils and microtubules in Arabidopsis. Plant Cell 26:2601–2616. doi:10.1105/tpc.114.126193 CrossRefGoogle Scholar
  34. Liu Y, Gamble G, Thibodeaux D (2010) Two-dimensional attenuated total reflection infrared correlation spectroscopy study of the desorption process of water-soaked cotton fibers. Appl Spectrosc 64:1355–1363. doi:10.1366/000370210793561556 CrossRefGoogle Scholar
  35. Liu Q, Talbot M, Llewellyn DJ (2013) Pectin methylesterase and pectin remodelling differ in the fibre walls of two gossypium species with very different fibre properties. PLoS One 8:e65131. doi:10.1371/journal.pone.0065131 CrossRefGoogle Scholar
  36. Long RL, Bange MP, Delhom CD, Church JS, Constable GA (2013) An assessment of alternative cotton fibre quality attributes and their relationship with yarn strength. Crop Sci 64:750–762. doi:10.1071/Cp12382 Google Scholar
  37. Meinert MC, Delmer DP (1977) Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol 59:1088–1097. doi:10.1104/pp.59.6.1088 CrossRefGoogle Scholar
  38. Nelson ML, Mares T (1965) Accessibility and lateral order distribution of the cellulose in the developing cotton fiber1. Text Res J 35:592–603. doi:10.1177/004051756503500703 CrossRefGoogle Scholar
  39. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi:10.1186/1754-6834-310 CrossRefGoogle Scholar
  40. Park YB, Lee CM, Zhang T, Koo B-W, Park S, Cosgrove DJ, Kim SH (2013) Monitoring large-scale ordering of cellulose in intact plant cell walls using sum frequency generation (SFG) spectroscopy. Plant Physiol 163:907–913. doi:10.1104/pp.113.225235 CrossRefGoogle Scholar
  41. Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978. doi:10.1103/PhysRev.56.978 CrossRefGoogle Scholar
  42. Peeters M-C, De Langhe E (1986) Cellulose packing density in the secondary wall of never dried cotton fibers. Text Res J 56:755–758. doi:10.1177/004051758605601207 CrossRefGoogle Scholar
  43. Rämänen P, Penttilä PA, Svedström K, Maunu SL, Serimaa R (2012) The effect of drying method on the properties and nanoscale structure of cellulose whiskers. Cellulose 19:901–912. doi:10.1007/s10570-012-9695-3 CrossRefGoogle Scholar
  44. Rebenfield I (1990) Fibers. In: Kroschwitz JI (ed) Polymers: fibers and textiles, a compendium. Wiley, New YorkGoogle Scholar
  45. Rodgers J, Delhom C, Fortier C, Thibodeaux D (2011) Rapid measurement of cotton fiber maturity and fineness by image analysis-microscopy using the Cottonscope®. Text Res J. doi:10.1177/0040517511431317 Google Scholar
  46. Seagull R (1992) A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development. J Cell Sci 101:561–577Google Scholar
  47. Singh B, Avci U, Inwood SEE, Grimson MJ, Landgraf J, Mohnen D, Sørensen I, Wilkerson CG, Willats WG, Haigler CH (2009) A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. Plant Physiol 150:684–699. doi:10.1104/pp.109.135459 CrossRefGoogle Scholar
  48. Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466. doi:10.1021/Ma00009a050 CrossRefGoogle Scholar
  49. Timpa JD, Triplett BA (1993) Analysis of cell-wall polymers during cotton fiber development. Planta 189:101–108. doi:10.1007/BF00201350 CrossRefGoogle Scholar
  50. Updegraff DM (1969) Semimicro determination of cellulose inbiological materials. Anal Biochem 32:420–424. doi:10.1016/S0003-2697(69)80009-6 CrossRefGoogle Scholar
  51. Wakelyn P, French A (2007) Cotton fiber chemistry and technology. CRC Press, Taylor and Francis Group, Boca RatonGoogle Scholar
  52. Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M (2013) Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proc Natl Acad Sci 110:16444–16449. doi:10.1073/pnas.1316290110 CrossRefGoogle Scholar
  53. Wendel JF, Brubaker C, Alvarez I, Cronn R, Stewart J (2009) Evolution and natural history of the cotton genus. In: Paterson AH (ed) Genetics and genomics of cotton, plant genetics and genomics: crops and models 3. Springer, New YorkGoogle Scholar
  54. Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129. doi:10.1016/0008-6215(87)80306-3 CrossRefGoogle Scholar
  55. Willison J, Brown RM Jr (1977) An examination of the developing cotton fiber: wall and plasmalemma. Protoplasma 92:21–41. doi:10.1007/BF01280198 CrossRefGoogle Scholar
  56. Zimmerley M, Younger R, Valenton T, Oertel DC, Ward JL, Potma EO (2010) Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-stokes Raman scattering microscopy study. J Phys Chem B 114:10200–10208. doi:10.1021/jp103216j CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Christopher M. Lee
    • 1
  • Kabindra Kafle
    • 1
  • David W. Belias
    • 1
  • Yong Bum Park
    • 2
  • Richard E. Glick
    • 3
  • Candace H. Haigler
    • 4
  • Seong H. Kim
    • 1
  1. 1.Department of Chemical Engineering and Materials Research InstitutePennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of BiologyPennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Crop ScienceNorth Carolina State UniversityRaleighUSA
  4. 4.Department of Crop Science and Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations