, Volume 22, Issue 2, pp 1063–1074 | Cite as

Surface characteristics of cellulose nanoparticles grafted by surface-initiated ring-opening polymerization of ε-caprolactone

  • Linn Carlsson
  • Tobias Ingverud
  • Hanna Blomberg
  • Anna Carlmark
  • Per Tomas LarssonEmail author
  • Eva MalmströmEmail author
Original Paper


In this study, surface-initiated ring-opening polymerization has been employed for the grafting of ε-caprolactone from cellulose nanoparticles, made by partial hydrolysis of cellulose cotton linters. A sacrificial initiator was employed during the grafting reactions, to form free polymer in parallel to the grafting reaction. The degree of polymerization of the polymer grafts, and of the free polymer, was varied by varying the reaction time. The aim of this study was to estimate the cellulose nanoparticle degree of surface substitution at different reaction times. This was accomplished by combining measurement results from spectroscopy and chromatography. The prepared cellulose nanoparticles were shown to have 3.1 (±0.3) % of the total anhydroglucose unit content present at the cellulose nanoparticle surfaces. This effectively limits the amount of cellulose that can be targeted by the SI-ROP reactions. For a certain SI-ROP reaction time, it was assumed that the resulting degree of polymerization (DP) of the grafts and the DP of the free polymer were equal. Based on this assumption it was shown that the cellulose nanoparticle surface degree of substitution remained approximately constant (3–7 %) and seemingly independent of SI-ROP reaction time. We believe this work to be an important step towards a deeper understanding of the processes and properties controlling SI-ROP reactions occurring at cellulose surfaces.


Solid-state cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS 13C-NMR) Surface grafting Ring-opening polymerization Degree of substitution Cotton linters Cellulose 



Free radical polymerization


Reversible-deactivation radical polymerization


Molar-mass dispersity


Atom transfer radical polymerization


Reversible addition-fragmentation chain-transfer


Nitroxide-mediated polymerization


Ring-opening polymerization


Surface-initiated ring-opening polymerization


Anhydroglucose unit


Cellulose nanofibrils


Cellulose nanocrystals


Tin 2-ethylhexanoate






Cellulose cotton linters


Hydrolyzed cellulose cotton linters


Cross-polarization/magic angle spinning


Bulk monomer degree of substitution


PCL-grafted HCCL


Degree of polymerization


Size exclusion chromatography


Degree of polymer/cellulose nanoparticle surface substitution


Sodium perchlorate


Benzyl alcohol







Wallenberg Wood Science Center (WWSC), the Swedish Research Council (VR) and  the Swedish Research Council Formas are acknowledged for financial support. Dr. Xuewei Zhang, LCPP C2P2, CPE, Lyon, France is greatly acknowledged for support with SEC analyses.

Supplementary material

10570_2014_510_MOESM1_ESM.pdf (400 kb)
Supplementary material 1 (PDF 400 kb)


  1. Biela T, Duda A, Penczek S (2002) Control of Mn, Mw/Mn, end-groups, and kinetics in living polymerization of cyclic esters. Macromol Symp 183(1):1–10. doi: 10.1002/1521-3900(200207)183:1<1::aid-masy1>;2-q CrossRefGoogle Scholar
  2. Boujemaoui A, Carlsson L, Malmström E, Lahcini M, Berglund L, Sehaqui H, Carlmark A (2012) Facile preparation route for nanostructured composites: surface-Initiated ring-opening polymerization of ε-caprolactone from high-surface-area nanopaper. ACS Appl Mater Interfaces 4(6):3191–3198. doi: 10.1021/am300537h CrossRefGoogle Scholar
  3. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146. doi: 10.1016/j.progpolymsci.2006.11.002 CrossRefGoogle Scholar
  4. Carlmark A (2013) Tailoring cellulose surfaces by controlled polymerization methods. Macromol Chem Phys 214(14):1539–1544. doi: 10.1002/macp.201300272 CrossRefGoogle Scholar
  5. Carlmark A, Malmström E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124(6):900–901. doi: 10.1021/ja016582h CrossRefGoogle Scholar
  6. Carlmark A, Larsson E, Malmström E (2012) Grafting of cellulose by ring-opening polymerisation—a review. Eur Polym J 48(10):1646–1659. doi: 10.1016/j.eurpolymj.2012.06.013 CrossRefGoogle Scholar
  7. Carlsson L, Utsel S, Wågberg L, Malmström E, Carlmark A (2012) Surface-initiated ring-opening polymerization from cellulose model surfaces monitored by a Quartz Crystal Microbalance. Soft Matter 8(2):512–517. doi: 10.1039/c1sm06121f
  8. Carothers WH, Dorough GL, van Natta FJ (1932) Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. J Am Chem Soc 54(2):761–772. doi: 10.1021/ja01341a046 CrossRefGoogle Scholar
  9. Chunilall V, Bush T, Larsson PT, Iversen T, Kindness A (2010) A CP/MAS 13C-NMR study of cellulose fibril aggregation in eucalyptus dissolving pulps during drying and the correlation between aggregate dimensions and chemical reactivity. Holzforschung 64(6):693–698. doi: 10.1515/hf.2010.097
  10. Daly WH, Evenson TS, Iacono ST, Jones RW (2001) Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxide mediation. Macromol Symp 174(1):155–164. doi: 10.1002/1521-3900(200109)174:1<155::aid-masy155>;2-o CrossRefGoogle Scholar
  11. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. doi: 10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  12. Geacintov N, Stannett VT, Abrahamson EW, Hermans JJ (1959) Grafting onto cellulose and cellulose derivatives by using ultraviolet irradiation. In: Proceedings of Cellulose Conference, 2nd, Syracuse, pp 142–159Google Scholar
  13. Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) Poly(ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology, and thermo-mechanical properties. Polymer 52(7):1532–1538. doi: 10.1016/j.polymer.2011.02.004 CrossRefGoogle Scholar
  14. Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010. doi: 10.1039/b809212e CrossRefGoogle Scholar
  15. Hafrén J, Córdova A (2005) Direct organocatalytic polymerization from cellulose fibers. Macromol Rapid Commun 26(2):82–86. doi: 10.1002/marc.200400470 CrossRefGoogle Scholar
  16. Husemann M, Mecerreyes D, Hawker CJ, Hedrick JL, Shah R, Abbott NL (1999) Surface-initiated polymerization for amplification of self-assembled monolayers patterned by microcontact printing. Angew Chem Int Ed 38:647–649. doi: 10.1002/(sici)1521-3773(19990301)38:5<647::aid-anie647>;2-0 CrossRefGoogle Scholar
  17. Köhnke T, Lund K, Brelid H, Westman G (2010) Kraft pulp hornification: a closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydr Polym 81(2):226–233. doi: 10.1016/j.carbpol.2010.02.023 CrossRefGoogle Scholar
  18. Kowalski A, Duda A, Penczek S (2000) Mechanism of cyclic ester polymerization initiated with tin(II) octoate. 2. Macromolecules fitted with tin(II) alkoxide species observed directly in MALDI−TOF spectra. Macromolecules 33(3):689–695. doi: 10.1021/ma9906940 CrossRefGoogle Scholar
  19. Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504. doi: 10.1039/b820162p CrossRefGoogle Scholar
  20. Labet M, Thielemans W (2011) Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of—caprolactone as a case study. Cellulose 18(3):607–617. doi: 10.1007/s10570-011-9527-x CrossRefGoogle Scholar
  21. Labet M, Thielemans W (2012) Citric acid as a benign alternative to metal catalysts for the production of cellulose-grafted-polycaprolactone copolymers. Polym Chem 3(3):679–684. doi: 10.1039/c2py00493c CrossRefGoogle Scholar
  22. Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS13C NMR investigation of molecular ordering in celluloses. Carbohydrate Research 302 (1–2):19–25. doi: 10.1016/S0008-6215(97)00130-4
  23. Larsson PT, Hult E-L, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15(1):31–40. doi: 10.1016/S0926-2040(99)00044-2 CrossRefGoogle Scholar
  24. Larsson PT, Svensson A, Wågberg L (2013) A new, robust method for measuring average fibre wall pore sizes in cellulose I rich plant fibre walls. Cellulose 20(2):623–631. doi: 10.1007/s10570-012-9850-x CrossRefGoogle Scholar
  25. Li K, Song J, Xu M, Kuga S, Zhang L, Cai J (2014) Extraordinary reinforcement effect of three-dimensionally nanoporous cellulose gels in poly(ε-caprolactone) bionanocomposites. ACS Appl Mater Interfaces. doi: 10.1021/am500337p Google Scholar
  26. Lönnberg H, Zhou Q, Brumer H, Teeri TT, Malmström E, Hult A (2006) Grafting of cellulose fibers with poly(ε-caprolactone) and poly(l-lactic acid) via ring-opening polymerization. Biomacromolecules 7(7):2178–2185. doi: 10.1021/bm060178z CrossRefGoogle Scholar
  27. Lönnberg H, Fogelström L, Berglund L, Malmström E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(ε-caprolactone)—synthesis and characterization. Eur Polym J 44(9):2991–2997. doi: 10.1016/j.eurpolymj.2008.06.023 CrossRefGoogle Scholar
  28. Lönnberg H, Fogelström L, Zhou Q, Hult A, Berglund L, Malmström E (2011a) Investigation of the graft length impact on the interfacial toughness in a cellulose/poly(ε-caprolactone) bilayer laminate. Compos Sci Technol 71(1):9–12. doi: 10.1016/j.compscitech.2010.09.007 CrossRefGoogle Scholar
  29. Lönnberg H, Larsson K, Lindström T, Hult A, Malmström E (2011b) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites–influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3:1426–1433. doi: 10.1021/am2001828 CrossRefGoogle Scholar
  30. Malmström E, Carlmark A (2012) Controlled grafting of cellulose fibres—an outlook beyond paper and cardboard. Polym Chem 3(7):1702–1713. doi: 10.1039/c1py00445j CrossRefGoogle Scholar
  31. Mino G, Kaizerman S (1958) A new method for the preparation of graft copolymers. Polymerization initiated by ceric ion redox systems. J Polym Sci 31(122):242–243. doi: 10.1002/pol.1958.1203112248 CrossRefGoogle Scholar
  32. Nordgren N, Lönnberg H, Hult A, Malmström E, Rutland MW (2009) Adhesion dynamics for cellulose nanocomposites. ACS Appl Mater Interfaces 1:2098–2103. doi: 10.1021/am900381t CrossRefGoogle Scholar
  33. Nordgren N, Carlsson L, Blomberg H, Carlmark A, Malmström E, Rutland MW (2013) Nanobiocomposite adhesion: role of graft length and temperature in a hybrid biomimetic approach. Biomacromolecules 14:1003–1009. doi: 10.1021/bm301790b CrossRefGoogle Scholar
  34. Paquet O, Krouit M, Bras J, Thielemans W, Belgacem MN (2010) Surface modification of cellulose by PCL grafts. Acta Mater 58(3):792–801. doi: 10.1016/j.actamat.2009.09.057 CrossRefGoogle Scholar
  35. Peydecastaing J, Vaca-Garcia C, Borredon E (2009) Accurate determination of the degree of substitution of long chain cellulose esters. Cellulose 16(2):289–297. doi: 10.1007/s10570-008-9267-8 CrossRefGoogle Scholar
  36. Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition−fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25):10363–10372. doi: 10.1021/ma0515026 CrossRefGoogle Scholar
  37. Roy D, Guthrie JT, Perrier S (2008) Synthesis of natural-synthetic hybrid materials from cellulose via the RAFT process. Soft Matter 4(1):145–155. doi: 10.1039/b711248n CrossRefGoogle Scholar
  38. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064. doi: 10.1039/b808639g CrossRefGoogle Scholar
  39. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660. doi: 10.1002/pol.1962.1205716551 CrossRefGoogle Scholar
  40. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432. doi: 10.1021/bm801193d CrossRefGoogle Scholar
  41. Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26(1):402–411. doi: 10.1021/la9028595 CrossRefGoogle Scholar
  42. Vigo TL (1998) Interaction of cellulose with other polymers: retrospective and prospective. Polym Adv Technol 9(9):539–548. doi: 10.1002/(sici)1099-1581(199809)9:9<539::aid-pat813>;2-i CrossRefGoogle Scholar
  43. Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312(3):123–129. doi: 10.1016/S0008-6215(98)00236-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Linn Carlsson
    • 1
    • 2
  • Tobias Ingverud
    • 2
  • Hanna Blomberg
    • 2
  • Anna Carlmark
    • 2
  • Per Tomas Larsson
    • 1
    • 2
    • 3
    Email author
  • Eva Malmström
    • 2
    Email author
  1. 1.Wallenberg Wood Science Centre, School of Chemical Science and EngineeringKTH Royal Institute of TechnologyStockholmSweden
  2. 2.School of Chemical Science and Engineering, Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSweden
  3. 3.Innventia ABStockholmSweden

Personalised recommendations