, Volume 22, Issue 1, pp 289–299 | Cite as

Superhydrophobic surfaces from surface-hydrophobized cellulose fibers with stearoyl groups

  • Yonggui Wang
  • Xiang Wang
  • Lars-Oliver Heim
  • Hergen Breitzke
  • Gerd Buntkowsky
  • Kai ZhangEmail author
Original Paper


In this report, surface-hydrophobized cellulose fibers by stearoyl groups were used for the construction of superhydrophobic surfaces. The product after the synthesis contains two components: cellulose microfibers as the major component and nanoscaled segments in small amounts. The crystalline structure of cellulose was maintained after surface modification based on solid-state 13C NMR spectroscopy. Superhydrophobic surfaces showing static water contact angles of >150° were fabricated using freshly prepared products containing both components via the facile route, e.g., solvent casting. The cellulose types, microcrystalline cellulose or cotton linter cellulose fibers, did not significantly affect the chemical modification of cellulose fibers, but the superhydrophobic surfaces using surface-hydrophobized cotton linters as starting materials exhibited higher surface hydrophobicity and better impact stability in comparison to shorter microcrystalline cellulose. Due to the presence of a crystalline cellulose skeleton, the obtained superhydrophobic surfaces are stable during the heat treatment at 80 °C.


Cellulose fiber Stearoyl ester Superhydrophobic Contact angle 



Authors thank the Hessian excellence initiative LOEWE Research Cluster SOFT CONTROL for the financial support. We thank Prof. M. Biesalski for the kind support. Y.W. thanks the CSC (Chinese Scholarship Council) for financial support.


  1. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285. doi: 10.1126/science.223.4633.283 CrossRefGoogle Scholar
  2. Azimi G, Dhiman R, Kwon HM, Paxson AT, Varanasi KK (2013) Hydrophobicity of rare-earth oxide ceramics. Nat Mater 12(4):315–320. doi: 10.1038/nmat3545 CrossRefGoogle Scholar
  3. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8. doi: 10.1007/s004250050096 CrossRefGoogle Scholar
  4. Bayer IS, Fragouli D, Attanasio A, Sorce B, Bertoni G, Brescia R, Di Corato R, Pellegrino T, Kalyva M, Sabella S, Pompa PP, Cingolani R, Athanassiou A (2011) Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl Mater Inter 3(10):4024–4031. doi: 10.1021/am200891f CrossRefGoogle Scholar
  5. Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10(8):2144–2151. doi: 10.1021/bm900319k CrossRefGoogle Scholar
  6. Caschera D, Mezzi A, Cerri L, Caro T, Riccucci C, Ingo GM, Padeletti G, Biasiucci M, Gigli G, Cortese B (2013) Effects of plasma treatments for improving extreme wettability behavior of cotton fabrics. Cellulose 21(1):741–756. doi: 10.1007/s10570-013-0123-0 CrossRefGoogle Scholar
  7. Chen LQ, Xiao ZY, Chan PCH, Lee YK (2010) Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays. J Micromech Microeng 20(10). doi: 10.1088/0960-1317/20/10/105001
  8. Chen L, Xiao Z, Chan PCH, Lee Y-K, Li Z (2011) A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf. Appl Surf Sci 257(21):8857–8863. doi: 10.1016/j.apsusc.2011.04.094 CrossRefGoogle Scholar
  9. Clift MJ, Foster EJ, Vanhecke D, Studer D, Wick P, Gehr P, Rothen-Rutishauser B, Weder C (2011) Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules 12(10):3666–3673. doi: 10.1021/bm200865j CrossRefGoogle Scholar
  10. Cunha AG, Freire CS, Silvestre AJ, Pascoal Neto C, Gandini A, Orblin E, Fardim P (2007) Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates. Biomacromolecules 8(4):1347–1352. doi: 10.1021/bm0700136 CrossRefGoogle Scholar
  11. Deng T, Varanasi KK, Hsu M, Bhate N, Keimel C, Stein J, Blohm M (2009) Nonwetting of impinging droplets on textured surfaces. Appl Phys Lett 94(13). doi: 10.1063/1.3110054
  12. Deng X, Mammen L, Butt HJ, Vollmer D (2012) Candle soot as a template for a transparent robust superamphiphobic coating. Science 335(6064):67–70. doi: 10.1126/science.1207115 CrossRefGoogle Scholar
  13. Dorrer C, Rühe J (2008) Wetting of silicon nanograss: from superhydrophilic to superhydrophobic surfaces. Adv Mater 20(1):159–163. doi: 10.1002/adma.200701140 CrossRefGoogle Scholar
  14. Dorrer C, Rühe J (2009) Some thoughts on superhydrophobic wetting. Soft Matter 5(1):51. doi: 10.1039/b811945g CrossRefGoogle Scholar
  15. Erbil HY, Demirel AL, Avci Y, Mert O (2003) Transformation of a simple plastic into a superhydrophobic surface. Science 299(5611):1377–1380. doi: 10.1126/science.1078365 CrossRefGoogle Scholar
  16. Feng XJ, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18(23):3063–3078. doi: 10.1002/adma.200501961 CrossRefGoogle Scholar
  17. Feng L, Li SH, Li YS, Li HJ, Zhang LJ, Zhai J, Song YL, Liu BQ, Jiang L, Zhu DB (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860. doi: 10.1002/adma.200290020 CrossRefGoogle Scholar
  18. Gao X, Jiang L (2004) Biophysics: water-repellent legs of water striders. Nature 432(7013):36. doi: 10.1038/432036a CrossRefGoogle Scholar
  19. Geissler A, Biesalski M, Heinze T, Zhang K (2014) Formation of nanostructured cellulose stearoyl esters via nanoprecipitation. J Mater Chem A 2(4):1107. doi: 10.1039/c3ta13937a CrossRefGoogle Scholar
  20. Genzer J, Efimenko K (2000) Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science 290(5499):2130–2133. doi: 10.1126/science.290.5499.2130 CrossRefGoogle Scholar
  21. Guo Z, Zhou F, Hao J, Liu W (2005) Stable biomimetic super-hydrophobic engineering materials. J Am Chem Soc 127(45):15670–15671. doi: 10.1021/ja0547836 CrossRefGoogle Scholar
  22. He M, Xu M, Zhang LN (2013) Controllable Stearic Acid Crystal Induced High Hydrophobicity on Cellulose Film Surface. ACS Appl Mater Inter 5(3):585–591. doi: 10.1021/Am3026536 CrossRefGoogle Scholar
  23. Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16(21):8210–8212. doi: 10.1021/La9913957 CrossRefGoogle Scholar
  24. Jin C, Jiang Y, Niu T, Huang J (2012) Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J Mater Chem 22(25):12562. doi: 10.1039/c2jm31750h CrossRefGoogle Scholar
  25. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  26. Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Zeng XC (2009) Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proc Natl Acad Sci USA 106(21):8435–8440. doi: 10.1073/pnas.0902027106 CrossRefGoogle Scholar
  27. Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25CrossRefGoogle Scholar
  28. Lee KY, Blaker JJ, Murakami R, Heng JY, Bismarck A (2014) Phase behavior of medium and high internal phase water-in-oil emulsions stabilized solely by hydrophobized bacterial cellulose nanofibrils. Langmuir 30(2):452–460. doi: 10.1021/la4032514 CrossRefGoogle Scholar
  29. Li S, Xie H, Zhang S, Wang X (2007) Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Comm 46:4857. doi: 10.1039/b712056g CrossRefGoogle Scholar
  30. Li G, Zheng H, Wang Y, Wang H, Dong Q, Bai R (2010) A facile strategy for the fabrication of highly stable superhydrophobic cotton fabric using amphiphilic fluorinated triblock azide copolymers. Polymer 51(9):1940–1946. doi: 10.1016/j.polymer.2010.03.002 CrossRefGoogle Scholar
  31. Malmström E, Carlmark A (2012) Controlled grafting of cellulose fibres—an outlook beyond paper and cardboard. Polym Chem 3(7):1702. doi: 10.1039/c1py00445j CrossRefGoogle Scholar
  32. Nystrom D, Lindqvist J, Ostmark E, Hult A, Malmstrom E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun 34:3594–3596. doi: 10.1039/b607411a CrossRefGoogle Scholar
  33. Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16(4):641–647. doi: 10.1007/s10570-009-9321-1 CrossRefGoogle Scholar
  34. Reyssat M, Pepin A, Marty F, Chen Y, Quere D (2006) Bouncing transitions on microtextured materials. Europhys Lett 74(2):306–312. doi: 10.1209/epl/i2005-10523-2 CrossRefGoogle Scholar
  35. Roy D, Guthrie JT, Perrier S (2005) Graft Polymerization: grafting Poly(styrene) from cellulose via reversible addition—fragmentation chain transfer (RAFT) Polymerization. Macromolecules 38(25):10363–10372. doi: 10.1021/ma0515026 CrossRefGoogle Scholar
  36. Sealey JE, Samaranayake G, Todd JG, Glasser WG (1996) Novel cellulose derivatives. IV. Preparation and thermal analysis of waxy esters of cellulose. J Polym Sci Part B Polym Phys 34:1613–1620CrossRefGoogle Scholar
  37. Simončič B, Hadžić S, Vasiljević J, Černe L, Tomšič B, Jerman I, Orel B, Medved J (2013) Tailoring of multifunctional cellulose fibres with “lotus effect” and flame retardant properties. Cellulose 21(1):595–605. doi: 10.1007/s10570-013-0103-4 Google Scholar
  38. Song JL, Rojas OJ (2013) Approaching super-hydrophobicity from cellulosic materials: a Review. Nord Pulp Pap Res J 28(2):216–238CrossRefGoogle Scholar
  39. Teeäär R, Serimaa R, Paakkarl T (1987) Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods. Polym Bull 17(3). doi: 10.1007/bf00285355
  40. Vaca-Garcia C, Borredon ME, Gaseta A (2001) Determination of the degree of substitution (DS) of mixed cellulose esters by elemental analysis. Cellulose 8(3):225–231. doi: 10.1023/a:1013133921626 CrossRefGoogle Scholar
  41. Vaca-Garcia C, Gozzelino G, Glasser WG, Borredon ME (2003) Dynamic mechanical thermal analysis transitions of partially and fully substituted chellulose fatty esters. J Polym Sci Part B Polym Phys 41:281–289CrossRefGoogle Scholar
  42. Vasiljević J, Gorjanc M, Tomšič B, Orel B, Jerman I, Mozetič M, Vesel A, Simončič B (2012) The surface modification of cellulose fibres to create super-hydrophobic, oleophobic and self-cleaning properties. Cellulose 20(1):277–289. doi: 10.1007/s10570-012-9812-3 CrossRefGoogle Scholar
  43. Vuoti S, Talja R, Johansson L-S, Heikkinen H, Tammelin T (2013) Solvent impact on esterification and film formation ability of nanofibrillated cellulose. Cellulose 20(5):2359–2370. doi: 10.1007/s10570-013-9983-6 CrossRefGoogle Scholar
  44. Xu B, Cai Z (2008) Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Appl Surf Sci 254(18):5899–5904. doi: 10.1016/j.apsusc.2008.03.160 CrossRefGoogle Scholar
  45. Yu M, Gu G, Meng W-D, Qing F-L (2007) Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl Surf Sci 253(7):3669–3673. doi: 10.1016/j.apsusc.2006.07.086 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yonggui Wang
    • 1
  • Xiang Wang
    • 2
  • Lars-Oliver Heim
    • 2
  • Hergen Breitzke
    • 3
  • Gerd Buntkowsky
    • 3
  • Kai Zhang
    • 1
    Email author
  1. 1.Ernst Berl Institute for Chemical Engineering and Macromolecular ScienceTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Center of Smart InterfacesTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Eduard-Zintl-Institute for Inorganic Chemistry and Physical ChemistryTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations