, Volume 22, Issue 1, pp 45–52 | Cite as

The S3 layer isolated from carboxymethylated cellulose wood fibers

  • Goeun Sim
  • Theo G. M. van de VenEmail author
Original Paper


The innermost S3 layer is isolated from highly swollen, carboxymethylated cellulose wood fibers (CMF). The isolation is attempted by applying gentle magnetic stirring, ultrasonication, and acid hydrolysis, where each treatment has caused the formation of largely variable fiber morphologies. The S3 layer can be partially or completely isolated from CMF by applying gentle shear or a mild acid hydrolysis. The S3 layer isolated from CMF is highly swollen with a volume 5–10 times its original value, and has microfibril angles between 50° and 90°. Surface carboxylates on the S3 microfibrils are available for further chemical modifications. Dominant right handedness is observed from 3D reconstructed confocal microscopic images. When air-dried from water, the S3 layer collapses completely onto the substrate, giving an average layer thickness of 83–140 nm.


S3 layer Carboxymethylated fibers Ultrastructure of the wood cell wall 



This work was supported by an NSERC Industrial Research Chair supported by FPInnovations, by the NSERC Green Fibre Network, and the FQRNT Centre for Self-Assembled Chemical Structures. Special thanks to Dr. Md Nur Alam, Mr. Louis Godbout, Dr. Mohini Ramkaran at the CSACS Scanning Probe Microscopy group, Dr. Elke Küster-Schöck at McGill Cell Imaging and Analysis Network, and Dr. Rima Wazen at the University of Montréal SEM facility.


  1. Barnett JR, Bonham V (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev Camb Philos Soc 79:461–472CrossRefGoogle Scholar
  2. Booker RE, Sell J (1998) The nanostructure of the cell wall of softwoods and its functions in a living tree. Holz als Roh- und Werkst 56:1–8. doi: 10.1007/s001070050255 CrossRefGoogle Scholar
  3. Brändström J (2001) Micro- and ultrastructural aspects of Norway spruce tracheids: a review. IAWA J 22:333–353. doi: 10.1163/22941932-90000381 CrossRefGoogle Scholar
  4. Brandt B, Zollfrank C, Franke O et al (2010) Micromechanics and ultrastructure of pyrolysed softwood cell walls. Acta Biomater 6:4345–4351. doi: 10.1016/j.actbio.2010.05.026 CrossRefGoogle Scholar
  5. Déjardin A, Laurans F, Arnaud D et al (2010) Wood formation in angiosperms. C R Biol 333:325–334. doi: 10.1016/j.crvi.2010.01.010 CrossRefGoogle Scholar
  6. Donaldson L, Xu P (2005) Microfibril orientation across the secondary cell wall of Radiata pine tracheids. Trees 19:644–653. doi: 10.1007/s00468-005-0428-1 CrossRefGoogle Scholar
  7. Fahlén J, Salmén L (2003) Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J Mater Sci 8:119–126CrossRefGoogle Scholar
  8. Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766. doi: 10.1098/rsif.2012.0341 CrossRefGoogle Scholar
  9. Hu TQ, Hayek A (2012) Cellulose materials with novel properties. US Patent 13-265973Google Scholar
  10. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. doi: 10.1039/c0nr00583e CrossRefGoogle Scholar
  11. Jardeby K, Germgard U, Kreutz B et al (2005) The influence of fibre wall thickness on the undissolved residuals in CMC solutions. Cellulose 12:167–175. doi: 10.1007/s10570-004-1371-9 CrossRefGoogle Scholar
  12. Le Moigne N, Navard P (2009) Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose 17:31–45. doi: 10.1007/s10570-009-9370-5 CrossRefGoogle Scholar
  13. Le Moigne N, Bikard J, Navard P (2010) Rotation and contraction of native and regenerated cellulose fibers upon swelling and dissolution: the role of morphological and stress unbalances. Cellulose 17:507–519. doi: 10.1007/s10570-009-9395-9 CrossRefGoogle Scholar
  14. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi: 10.1039/c0cs00108b CrossRefGoogle Scholar
  15. Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559. doi: 10.1007/s10570-008-9212-x CrossRefGoogle Scholar
  16. Neagu RC, Gamstedt EK, Stig LB, Lindström M (2006) Ultrastructural features affecting mechanical properties of wood fibres. Wood Mater Sci Eng 1:146–170. doi: 10.1080/17480270701195374 CrossRefGoogle Scholar
  17. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. doi: 10.1021/bm0703970 CrossRefGoogle Scholar
  18. Sell J, Zimmermann T (1993) Radial fibril agglomerations of the S2 on transverse-fracture surfaces of tracheids of tension-loaded spruce and white fir. Eur J Wood Wood Prod 51:384CrossRefGoogle Scholar
  19. Sim G, Alam MN, Godbout L, van de Ven T (2014) Structure of swollen carboxylated cellulose fibers. Cellulose. 1–12. doi: 10.1007/s10570-014-0425-x
  20. Tabet T, Aziz F (2013) Cellulose microfibril angle in wood and its dynamic mechanical significance. Cell Fundam Asp 113–142. doi: 10.5772/51105
  21. Yang H, Tejado A, Alam N et al (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28:7834–7842. doi: 10.1021/la2049663 CrossRefGoogle Scholar
  22. Zhong R, Ye Z (2009) Secondary cell walls. Encycl Life Sci 1–9. doi: 10.1002/9780470015902.a0021256

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Chemistry, Pulp and Paper Research CentreMcGill UniversityMontrealCanada
  2. 2.Centre for Self-Assembled Chemical StructuresMcGill UniversityMontrealCanada

Personalised recommendations