, Volume 22, Issue 1, pp 31–44 | Cite as

Coarse-grained simulation of cellulose Iβ with application to long fibrils

  • Bingxin Fan
  • Janna K. Maranas
Original Paper


Cellulose microfibrils are recalcitrant toward dissolution, thus it is difficult to extract and characterize them without modifying their native state. To study the molecular level behavior of microfibrils over 100 sugar residues, we construct a coarse-grained model of solvated cellulose Iβ microfibril using one bead per sugar residue. We derive the coarse-grained force field from atomistic simulation of a 36 chain, 40-residue microfibril by requiring consistency between the chain configuration, intermolecular packing and hydrogen bonding of the two levels of modeling. Coarse-grained force sites are placed at the geometric center of each glucose ring. Intermolecular van der Waals and hydrogen bonding interactions are added sequentially until the microfibril crystal structure in the atomistic simulation is achieved. This requires hydrogen bond potentials for pairs that hydrogen bond in cellulose Iβ, as well as those that can hydrogen bond in other structures, but not in cellulose Iβ. Microfibrils longer than 100 nm form kinks along their longitudinal direction, with an average periodicity of 70 nm. The behavior of kinked regions is similar with a bending angle of approximately 20°. These kinked regions might be linked to observations of periodic disorder from small angle neutron scattering and acid hydrolysis.


Coarse-grained simulation Cellulose Iβ Force field Full-length microfibril 



We thank Dr. Zhen Zhao and Dr. Linghao Zhong for providing the atomistic simulation coordinates of the solvated 6 × 6×40 microfibril. This work is supported as part of The Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090. The simulations were performed on high performance computing systems supported and maintained by the Penn State Research Computing and Cyberinfrastructure (RCC).


  1. Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls. Garland Science, New YorkGoogle Scholar
  2. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82CrossRefGoogle Scholar
  3. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefGoogle Scholar
  4. Ayton GS, Noid WG, Voth GA (2007) Systematic coarse graining of biomolecular and soft-matter systems. MRS Bull 32:929–934CrossRefGoogle Scholar
  5. Bahar I, Rader A (2005) Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 15:586–592CrossRefGoogle Scholar
  6. Bergenstrahle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRefGoogle Scholar
  7. Bergenstrahle M, Thormann E, Nordgren N, Berglund LA (2009) Force pulling of single cellulose chains at the crystalline cellulose–liquid interface: a molecular dynamics study. Langmuir 25:4635–4642CrossRefGoogle Scholar
  8. Bergenstråhle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose–water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112:2590–2595CrossRefGoogle Scholar
  9. Blaschek W, Koehler H, Semler U, Franz G (1982) Molecular weight distribution of cellulose in primary cell walls. Planta 154:550–555CrossRefGoogle Scholar
  10. Bond PJ, Holyoake J, Ivetac A, Khalid S, Sansom MSP (2007) Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J Struct Biol 157:593–605CrossRefGoogle Scholar
  11. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRefGoogle Scholar
  12. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217CrossRefGoogle Scholar
  13. Bu L, Beckham GT, Crowley MF, Chang CH, Matthews JF, Bomble YJ, Adney WS, Himmel ME, Nimlos MR (2009) The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds. J Phys Chem B 113:10994–11002CrossRefGoogle Scholar
  14. Damm W, Frontera A, Tirado-Rives J, Jorgensen W (1997) OPLS all-atom force field for carbohydrates. J Comput Chem 18:1955–1970CrossRefGoogle Scholar
  15. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98:10088–10092CrossRefGoogle Scholar
  16. Depa P, Chen C, Maranas JK (2011) Why are coarse-grained force fields too fast? A look at dynamics of four coarse-grained polymers. J Chem Phys 134:014903CrossRefGoogle Scholar
  17. Doruker P, Jernigan RL, Bahar I (2002) Dynamics of large proteins through hierarchical levels of coarse-grained structure. J Comput Chem 23:119–127CrossRefGoogle Scholar
  18. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley CD, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:1195–1203CrossRefGoogle Scholar
  19. Girard S, Muller-Plathe F (2004) Coarse-graining in polymer simulations. In: Karttunen M, Vattulainen I, Lukkarinen A (eds) Novel methods in soft matter simulations, vol 640., Lect Notes PhysSpringer, Berlin, pp 327–356CrossRefGoogle Scholar
  20. Glass DC, Moritsugu K, Cheng X, Smith JC (2012) REACH coarse-grained simulation of a cellulose fiber. Biomacromolecules 13:2634–2644CrossRefGoogle Scholar
  21. Guvench O, Greene SN, Kamath G, Brady JW, Vendable RM, Pastor RW, Mackerell AD (2008) Addictive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564CrossRefGoogle Scholar
  22. Guvench O, Hatcher E, Venable RM, Pastor RW, Mackerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370CrossRefGoogle Scholar
  23. Hanus J, Mazeau K (2006) The xyloglucan–cellulose assembly at the atomistic scale. Biopolymers 82:59–73CrossRefGoogle Scholar
  24. He X, Shinoda W, DeVane R, Klein ML (2010) Exploring the utility of coarse-grained water models for computational studies of interfacial systems. Mol Phys 108:2007–2020CrossRefGoogle Scholar
  25. Hynninen AP, Matthews JF, Backham GT, Crowley MF, Nimlos MR (2011) Coarse-grain model for glucose, cellobiose, and cellotetraose in water. J Chem Theory Comput 7:2137–2150CrossRefGoogle Scholar
  26. Izvekov S, Voth G (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473CrossRefGoogle Scholar
  27. Jarvis MC (2000) Interconversion of the Iα and Iβ crystalline forms of cellulose by bending. Carbohydr Res 325:150–154CrossRefGoogle Scholar
  28. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  29. Kennedy CJ, Cameron GJ, Sturcova A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007) Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. Cellulose 14:235–246CrossRefGoogle Scholar
  30. Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Chem Theory Comput 29:622–655Google Scholar
  31. Kony D, Damm W, Stoll S, van Gunsteren W (2002) An improved OPLS–AA force field for carbohydrates. J Comput Chem 23:1416–1429CrossRefGoogle Scholar
  32. Koyama M, Sugiyama J, Itoh T (1997) Systematic survey on crystalline features of algal celluloses. Cellulose 4:147–160CrossRefGoogle Scholar
  33. Lins RD, Hunenberger PH (2005) A new GROMOS force field for hexopyranose-based carbohydrates. J Chem Theory Comput 26:1400–1412Google Scholar
  34. Liu P, Izvekov S, Voth GA (2007) Multiscale coarse-graining of monosacharrides. J Phys Chem B 111:11566–11575CrossRefGoogle Scholar
  35. Lopez CA, Rzepiela AJ, de Vries AH, Dijkhuizen L, Hunenberger PH, Marrink SJ (2009) Martini coarse-grained force field: extension to carbohydrates. J Chem Theory Comput 5:3195–3210CrossRefGoogle Scholar
  36. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760CrossRefGoogle Scholar
  37. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824CrossRefGoogle Scholar
  38. Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Crowley MF (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152CrossRefGoogle Scholar
  39. Matthews JF, Bergenstrahle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF (2011) High-temperature behavior of cellulose I. J Phys Chem B 115:2155–2166CrossRefGoogle Scholar
  40. Matthews JF, Beckham GT, Bergenstrahle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose Iβ simulations with three carbohydrate force fields. J Chem Theory Comput 8:735–748CrossRefGoogle Scholar
  41. Mazeau K (2005) Structural micro-heterogeneities of crystalline Iβ-cellulose. Cellulose 12:339–349CrossRefGoogle Scholar
  42. Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394–2403CrossRefGoogle Scholar
  43. Mazeau K, Rivet A (2008) Wetting the (110) and (100) surfaces of Iβ cellulose studied by molecular dynamics. Biomacromolecules 9:1352–1354CrossRefGoogle Scholar
  44. McCann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96:323–334Google Scholar
  45. Molinero V, Goddard WA (2004) M3B: a coarse grain force field for molecular simulations of malto-oligosaccharides and their water mixture. J Phys Chem B 108:1414–1427CrossRefGoogle Scholar
  46. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S-J (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834CrossRefGoogle Scholar
  47. Moran JI, Alvarez VA, Cyras VP, Vazquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159CrossRefGoogle Scholar
  48. Nelson ML, Tripp VW (1953) Determination of the leveling-off degree of polymerization of cotton and rayon. J Polym Sci 10:577–586CrossRefGoogle Scholar
  49. Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15:21–29CrossRefGoogle Scholar
  50. Newman RH, Ha M-A, Melton LD (1994) Solid-state 13C NMR investigation of molecular ordering in the cellulose of apple cell walls. J Agric Food Chem 42:1402–1406CrossRefGoogle Scholar
  51. Nickerson RF, Habrle JA (1947) Cellulose intercrystalline structure: study by hydrolytic methods. Ind Eng Chem 39:1507–1512CrossRefGoogle Scholar
  52. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  53. Nishiyama Y, Kim U-J, Kim D-Y, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017CrossRefGoogle Scholar
  54. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRefGoogle Scholar
  55. Paavilainen S, Rog T, Vattulainen I (2011) Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations. J Phys Chem B 115:3747–3755CrossRefGoogle Scholar
  56. Park YB, Cosgrove DJ (2012) Change in cell wall biomechanical properties in the xyloglucan-difficient xxt1/xxt2 mutant of Arabidopsis. Plant Physiol 158:1933–1943CrossRefGoogle Scholar
  57. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRefGoogle Scholar
  58. Queyroy S, Neyerts S, Brown D, Muller-Plathe F (2004) Preparing relaxed systems of amorphous polymers by multiscale simulation: application to cellulose. Macromolecules 37:7338–7350CrossRefGoogle Scholar
  59. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489CrossRefGoogle Scholar
  60. Reith D, Putz M, Muller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24:1624–1636CrossRefGoogle Scholar
  61. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  62. Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Moore PB, Klein ML (2001) Simulations of phospholipids using a coarse grain model. J Phys Chem B 105:9785–9792CrossRefGoogle Scholar
  63. Shih AY, Arkhipov A, Freddolino PL, Schulten K (2006) Coarse grained protein-lipid model with application to lipoprotein particles. J Phys Chem B 110:3674–3684CrossRefGoogle Scholar
  64. Srinivas G, Cheng X, Smith JC (2011) A solvent-free coarse-grain model for crystalline and amorphous cellulose microfibrils. J Chem Theory Comput 7:2539–2548CrossRefGoogle Scholar
  65. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76CrossRefGoogle Scholar
  66. Stevens M (2004) Coarse-grained simulations of lipid bilayers. J Chem Phys 121:11942–11948CrossRefGoogle Scholar
  67. Thomas LH, Forsyth VT, Šturcová A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Timothy JW, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161:465–476CrossRefGoogle Scholar
  68. Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15:144–150CrossRefGoogle Scholar
  69. Wohlert J, Berglund LA (2011) A coarse-grained model for molecular dynamics simulations of native cellulose. J Chem Theory Comput 7:753–760CrossRefGoogle Scholar
  70. Zhao Z, Shklyaev OE, Nili A, Mohamed MNA, Kubicki JD, Crespi VH, Zhong L (2013) Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis. J Phys Chem A 117:2580–2589CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations