, Volume 22, Issue 1, pp 173–186 | Cite as

Ion reduction in metallic nanoparticles nucleation and growth on cellulose films: Does substrate play a role?

  • Ana Patrícia Carapeto
  • Ana Maria Ferraria
  • Sami Boufi
  • Manuel Rei Vilar
  • Ana Maria Botelho do Rego
Original Paper


The effect of the substrate (GaAs, Si, glass or Au) on the reduction of silver and gold ions in AgNO3 and HAuCl4·3H2O salts aqueous solutions was here studied. The main goal of this study was the understanding of the reduction mechanism of silver and gold ions in interaction with ultrathin cellulose films deposited on different substrates. Surface morphology was observed and measured using atomic force microscopy (AFM) and its chemical composition characterized by X-ray photoelectron spectroscopy (XPS). Results show that, besides the contribution of the cellulose film to the metallic ions reduction and nanoparticle (NP) growth, the substrate also plays an active role. This is clearly evident in the case of silicon, gallium arsenide, and gold substrates, either bare or covered by cellulose films. For bare glass substrates, no NPs were observed contrarily to glass substrates covered by a cellulose film, where NPs appear on the cellulose film. Yet, XPS showed that, in this last case, metallic ion reduction did not occur, at least in the surface region of the film, where oxidized silver was detected, suggesting a weak or absent reduction power of cellulose. In all cases, XPS C 1s spectra of the cellulose did not show any oxidation of the film. Anyway, the images point out the important role of the cellulose covering film on the final distribution of NPs on the surface.


Cellulose film Silver Gold Nanoparticles XPS AFM 



The authors wish to thank Prof. Nunes de Carvalho for the gold deposition and Prof. Pedro Brogueira for AFM microscope availability. The authors gratefully acknowledge the financial support provided by the North Atlantic Treaty Organization (NATO) Science for Peace grant MD_CLG_982316 and by the Fundação para a Ciência e a Tecnologia (FCT) project PEst-OE/CTM/LA0024/2013. A.P. Carapeto thanks FCT for PhD Grant, SFRH/BD/75734/2011.

Conflict of interest

There are no conflicts of interest.

Supplementary material

10570_2014_468_MOESM1_ESM.pdf (518 kb)
Supplementary material 1 (PDF 517 kb)


  1. Aizawa M, Buriak JM (2007) Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces. Chem Mater 19:5090–5101. doi: 10.1021/cm071382b CrossRefGoogle Scholar
  2. Albe K, Nordlund K, Nord J, Kuronen A (2002) Modeling of compound semiconductors: analytical bond-order potential for Ga, As, and GaAs. Phys Rev B 66:035205. doi: 10.1103/PhysRevB.66.035205
  3. Baer DR, Engelhard MH (2010) XPS analysis of nanostructured materials and biological surfaces. J Electron Spectrosc Relat Phenom 178:415–432. doi: 10.1016/j.elspec.2009.09.003 CrossRefGoogle Scholar
  4. Bard AJ, Parsons R, Jordan J (eds) (1985) Standard potentials in aqueous solutions. IUPAC Commission on electrochemistry and electroanalytical chemistry. Marcel Dekker Inc, New YorkGoogle Scholar
  5. Beamson G, Briggs D (1992) High resolution XPS of organic polymers: the Scienta ESCA300 database. Wiley, ChichesterGoogle Scholar
  6. Bollani M, Bietti S, Frigeri C, Chrastina D, Reyes K, Smereka P, Millunchick JM, Vanacore GM, Burghammer M, Tagliaferri A, Sanguinetti S (2014) Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates. Nanotechnology 25:205301. doi: 10.1088/0957-4484/25/20/205301
  7. Boufi S, Ferraria AM, Botelho do Rego AM, Battaglini N, Herbst F, Vilar MR (2011) Surface functionalisation of cellulose with noble metals nanoparticles through a selective nucleation. Carbohydr Polym 86:1586–1594. doi: 10.1016/j.carbpol.2011.06.067 CrossRefGoogle Scholar
  8. Briggs D, Grant JT (eds) (2003) Surface analysis (by auger and X-ray photoelectron spectroscopy). IM Publications, ChichesterGoogle Scholar
  9. Campbell DT, Parker SC, Starr DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298:811–814. doi: 10.1126/science.1075094 CrossRefGoogle Scholar
  10. Canamares MV, Garcia-Ramos JV, Gomez-Varga JD, Domingo C, Sanchez-Cortes S (2005) Comparative study of the morphology, aggregation, adherence to glass, and surface-enhanced Raman scattering activity of silver nanoparticles prepared by chemical reduction of Ag+ using citrate and hydroxylamine. Langmuir 21:8546–8553. doi: 10.1021/la050030l CrossRefGoogle Scholar
  11. Carapeto AP, Ferraria AM, Brogueira P, Boufi S, Botelho do Rego AM (2014) Cellulose films: designing template-free nanoporous cellulose films on semiconducting surfaces. Microsc Microanal. doi: 10.1017/S1431927614001706 Google Scholar
  12. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi: 10.1021/cr030698+ CrossRefGoogle Scholar
  13. El-Rafie MH, Shaheen TI, Mohamed AA, Hebeish A (2012) Bio-synthesis and applications of silver nanoparticles onto cotton fabrics. Carbohydr Polym 90:915–920. doi: 10.1016/j.carbpol.2012.06.020 CrossRefGoogle Scholar
  14. Ferraria AM, Boufi S, Battaglini N, Botelho do Rego AM, Vilar MR (2010) Hybrid systems of silver nanoparticles generated on cellulose surfaces. Langmuir 26:1996–2001. doi: 10.1021/la902477q CrossRefGoogle Scholar
  15. Ferraria AM, Carapeto AP, Botelho do Rego AM (2012) X-ray photoelectron spectroscopy: silver salts revisited. Vacuum 86:1988–1991. doi: 10.1016/j.vacuum.2012.05.031 CrossRefGoogle Scholar
  16. Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSxM: a software for scanning probe microscopy and a tool for Nanotechnology. Rev Sci Instrum 78:1–8. doi: 10.1063/1.2432410 CrossRefGoogle Scholar
  17. Khatab A, Lemine OM, Alkaoud A, Falamas A, Aziz M, Galvão Gobato Y, Henini M (2013) Photoluminescence intensity enhancement in self-assembled InAs quantum dots grown on (311) B and (100) GaAs substrates and coated with gold nanoparticles. Physica E Low Dimens Syst Nanostruct 54:233–236. doi: 10.1016/j.physe.2013.06.027 CrossRefGoogle Scholar
  18. Kontturi E, Thüne PC, Alexeev A, Niemantsverdriet JW (2005) Introducing open films of nanosized cellulose—atomic force microscopy and quantification of morphology. Polymer 46:3307–3317. doi: 10.1016/j.polymer.2005.02.087 CrossRefGoogle Scholar
  19. Lide DR (ed) (2009) CRC handbook of chemistry and physics, 89th Edition (Internet Version 2009). CRC Press/Taylor and Francis, Boca RatonGoogle Scholar
  20. Lu Q, Gao F, Komarneni S (2006) Cellulose-directed growth of selenium nanobelts in solution. Chem Mater 18:159–163. doi: 10.1021/cm051082z CrossRefGoogle Scholar
  21. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics—a route to nanoscale optical devices. Adv Mater 13:1501–1505. doi: 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
  22. Malinsky MD, Kelly KL, Schatz GC, Duyne RPV (2001) Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J Phys Chem B 105:2343–2350. doi: 10.1021/jp002906x CrossRefGoogle Scholar
  23. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1Google Scholar
  24. Ori G, Gentili D, Cavallini M, Franchini MC, Zapparoli M, Montorsi M, Siligardi C (2012) Immobilization of monolayer protected lipophilic gold nanorods on a glass surface. Nanotechnology 23:23055605. doi: 10.1088/0957-4484/23/5/055605
  25. Vilar RM, Elbeghdadi J, Debontridder F, Naaman R, Ferraria AM, Botelho do Rego AM (2005) Characterization of wet-etched GaAs (100) surfaces. Surf Interface Anal 37:673–682. doi: 10.1002/sia.2062 CrossRefGoogle Scholar
  26. Sarkar S, Guibal E, Quignard F, SenGupta AK (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanoparticle Res 14:715. doi: 10.1007/s11051-011-0715-2
  27. Sayed SY, Daly B, Buriak JM (2008) Characterization of the interface of gold and silver nanostructures on InP and GaAs synthesized via galvanic displacement. J Phys Chem C 112:12291–12298. doi: 10.1021/jp803887g CrossRefGoogle Scholar
  28. Schauermann S, Nilius N, Shaikhutdinov S, Freund H-J (2013) Nanoparticles for heterogeneous catalysis: new mechanistic insights. Acc Chem Res 46:1673–1681. doi: 10.1021/ar300225s CrossRefGoogle Scholar
  29. Seah MP (2001) Summary of ISO/TC 201 Standard: VII ISO 15472—surface chemical analysis—X-ray photoelectron spectrometers—calibration of energy scales. Surf Interface Anal 31:721–723. doi: 10.1002/sia.1076 CrossRefGoogle Scholar
  30. Shimoda M, Konishi T, Nishiwaki N, Yamashita Y, Yoshikawa H (2012) Sulfur-mediated palladium catalyst immobilized on a GaAs surface. J Appl Phys 111:124908. doi: 10.1063/1.4730377
  31. Turyanska L, Makarovsky O, Patanè A, Kozlova NV, Liu Z, Li M, Mann S (2012) High magnetic field quantum transport in Au nanoparticle—cellulose films. Nanotechnology 23:045702. doi: 10.1088/0957-4484/23/4/045702
  32. Vilar MR, Boufi S, Ferraria AM, Botelho do Rego AM (2007) Chemical modification of semiconductor surfaces by means of nanometric cellulose films. J Phys Chem C 111:12792–12803. doi: 10.1021/jp073850a CrossRefGoogle Scholar
  33. Vilar MR, Botelho do Rego AM, Boufi S, Parra V, Ferraria AM (2008a) Grafting of porphyrins on cellulose nanometric films. Langmuir 24:7309–7315. doi: 10.1021/la800786s CrossRefGoogle Scholar
  34. Vilar MR, Botelho do Rego AM, Ferraria AM, Jugnet Y, Noguès C, Peled D, Naaman R (2008b) Interaction of self-assembled monolayers of DNA with electrons: HREEL and XPS studies. J Phys Chem B 112:6957–6964. doi: 10.1021/jp8008207 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ana Patrícia Carapeto
    • 1
  • Ana Maria Ferraria
    • 1
  • Sami Boufi
    • 2
  • Manuel Rei Vilar
    • 3
  • Ana Maria Botelho do Rego
    • 1
  1. 1.Centro de Química-Física Molecular and IN, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.LMSE, Faculty of Science, University of SfaxSfaxTunisia
  3. 3.ITODYS, UMR7086 CNRSUniversité Paris Diderot, Sorbonne Paris CitéParis Cedex 13France

Personalised recommendations