, Volume 21, Issue 6, pp 4119–4133 | Cite as

Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study

  • Nathanaël Guigo
  • Karim Mazeau
  • Jean-Luc Putaux
  • Laurent HeuxEmail author
Original Paper


Never-dried sulfite wood pulp was beaten and subsequently microfibrillated before being submitted to periodate oxidation for various times. The oxidation progress, which was followed by 13C solid-state NMR spectroscopy in conjunction with degree of oxidation (DO) measurements together with ultrastructural observations, revealed that the cellulose crystallinity and microfibrillar integrity were kept intact until a DO of 0.3/0.4, indicating that at that level, the cellulose microfibrils had been oxidized exclusively at their surface. Beyond this DO value, the sample crystallinity started to deteriorate, as the oxidation progressed toward the core of the microfibrils. Remarkably, throughout the oxidation, the created carbonyl moieties were never observed, as they were readily recombined into hemiacetals by cyclization either within the same anhydro glucose unit (AGU) or with the adjacent un-oxidized AGUs of the same cellulose chain. At DO below 0.3/0.4, hemiacetal coupling with adjacent cellulose chains was also considered, but it appeared unlikely in view of the interchain distance imposed by the crystalline lattice. The oxidized samples were subjected to a reductive amination with benzylamine in order to convert their hydrophilic surfaces into hydrophobic ones. Despite the ease of this derivatization, the analysis of the 13C solid-state NMR spectra of the aminated products showed that, below a DO of 0.3, only half of the hemiacetal moieties could be converted into secondary amine products, whereas the other half remained untouched, likely for steric reasons.


Cellulose microfibrils Surface modification Topochemistry Hemiacetal cyclization Periodate oxidation 13C CP-MAS solid-state NMR 



The authors thank H. Chanzy for fruitful discussions during the writing of this work, as well as C. Lancelon-Pin for her assistance in the TEM observation of the cellulose samples.


  1. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) Grafting. Langmuir 17:21–27CrossRefGoogle Scholar
  2. Azzam F, Heux L, Putaux J-L, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11:3652–3659CrossRefGoogle Scholar
  3. Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10:2144–2151CrossRefGoogle Scholar
  4. Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27:49–66CrossRefGoogle Scholar
  5. Brown RM Jr (1996) The biosynthesis of cellulose. J Macromol Sci Pure Appl Chem A33:1345–1373CrossRefGoogle Scholar
  6. Brumer H III, Zhou Q, Baumann MJ, Carlsson K, Teeri TT (2004) Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan. J Am Chem Soc 126:5715–5721CrossRefGoogle Scholar
  7. Casu B, Naggi A, Torri G, Allegra G, Meille SV, Cosani A, Terbojevich M (1985) Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose. Macromolecules 18:2762–2767CrossRefGoogle Scholar
  8. Cavaillé J-Y, Chanzy H, Fleury E, Sassi J-F (1997) Surface-modified cellulose microfibrils, method for making same, and use thereof as a filler in composite materials. PCT Int Appl, WO 9712917Google Scholar
  9. Chanzy H (1990) Aspects of cellulose structure. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose sources and exploitation. Industrial utilization biotechnology and physico-chemical properties. Ellis Horwood Ltd., Chichester, pp 3–12Google Scholar
  10. Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80CrossRefGoogle Scholar
  11. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65CrossRefGoogle Scholar
  12. Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential click reaction and adsorption. Biomacromolecules 13:736–742CrossRefGoogle Scholar
  13. Fumagalli M, Ouhab D, Molina-Boisseau S, Heux L (2013a) Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. Biomacromolecules 14:3246–3255CrossRefGoogle Scholar
  14. Fumagalli M, Sanchez F, Molina-Boisseau S, Heux L (2013b) Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter 9:11309–11317CrossRefGoogle Scholar
  15. Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575CrossRefGoogle Scholar
  16. Guthrie RD (1961) “Dialdehydes” from the periodate oxidation of carbohydrates. Adv Carbohydr Chem 16:105–158Google Scholar
  17. Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244CrossRefGoogle Scholar
  18. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRefGoogle Scholar
  19. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813Google Scholar
  20. Heux L, Dinand E, Vignon MR (1999) Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR. Carbohydr Polym 40:115–124CrossRefGoogle Scholar
  21. Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212CrossRefGoogle Scholar
  22. Hieta K, Kuga S, Usuda M (1984) Electron staining of reducing ends evidences a parallel-chain structure in Valonia cellulose. Biopolymers 23:1807–1810CrossRefGoogle Scholar
  23. Hirai A, Horii F, Kitamaru R, Tsuji W (1990) CP/MAS carbon-13 NMR study of never-dried cotton fibers. J Polym Sci Part C Polym Lett 28:357–361CrossRefGoogle Scholar
  24. Hou QX, Liu W, Liu ZH, Bai LL (2007) Characteristics of wood cellulose fibers treated with periodate and bisulfite. Ind Eng Chem Res 46:7830–7837CrossRefGoogle Scholar
  25. Ishak MF, Painter T (1971) Formation of interresidue hemiacetals during the oxidation of polysaccharides by periodate ion. Acta Chem Scand 25:3875–3877CrossRefGoogle Scholar
  26. Jackson EL, Hudson CS (1937) Application of the cleavage type of oxidation by periodic acid to starch and cellulose. J Am Chem Soc 59:2049–2050CrossRefGoogle Scholar
  27. Jackson EL, Hudson CS (1938) Structure of the products of the periodic acid oxidation of starch and cellulose. J Am Chem Soc 60:989–991CrossRefGoogle Scholar
  28. Kasai W, Morooka T, Ek M (2014) Mechanical properties of films made from dialcohol cellulose prepared by homogeneous periodate oxidation. Cellulose 21:769–776CrossRefGoogle Scholar
  29. Kim U-J, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492CrossRefGoogle Scholar
  30. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466CrossRefGoogle Scholar
  31. Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94:9091–9095CrossRefGoogle Scholar
  32. Larsson PT, Westlund PO (2005) Line shapes in CP/MAS 13C NMR spectra of cellulose I. Spectrochim Acta Part A 62A:539–546CrossRefGoogle Scholar
  33. Larsson PA, Gimaaker M, Waagberg L (2008) The influence of periodate oxidation on the moisture sorptivity and dimensional stability of paper. Cellulose 15:837–847CrossRefGoogle Scholar
  34. Larsson PA, Berglund LA, Wagberg L (2014) Highly ductile fibres and sheets by core-shell structuring of the cellulose nanofibrils. Cellulose 21:323–333CrossRefGoogle Scholar
  35. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRefGoogle Scholar
  36. Liimatainen H, Visanko M, Sirvio JA, Hormi OEO, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. Biomacromolecules 13:1592–1597CrossRefGoogle Scholar
  37. Lindh J, Carlsson DO, Stromme M, Mihranyan A (2014) Convenient one-pot formation of 2,3-dialdehyde cellulose (DAC) beads via periodate oxidation of cellulose in water. Biomacromolecules 15:1928–1932Google Scholar
  38. Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaillé JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739CrossRefGoogle Scholar
  39. Ljungberg N, Cavaillé JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292CrossRefGoogle Scholar
  40. Maekawa E, Koshijima T (1984) Properties of 2,3-dicarboxy cellulose combined with various metallic ions. J Appl Polym Sci 29:2289–2297CrossRefGoogle Scholar
  41. Maekawa E, Koshijima T (1991) Preparation and structural consideration of nitrogen-containing derivatives obtained from dialdehyde celluloses. J Appl Polym Sci 42:169–178CrossRefGoogle Scholar
  42. Maia J, Carvalho RA, Coelho JFJ, Simoes PN, Gil MH (2011) Insight on the periodate oxidation of dextran and its structural vicissitudes. Polymer 52:258–265CrossRefGoogle Scholar
  43. Mazeau K (2005) Structural micro-heterogeneities of crystalline Iβ-cellulose. Cellulose 12:339–349CrossRefGoogle Scholar
  44. Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671CrossRefGoogle Scholar
  45. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  46. Newman RH, Hemmingson JA (1998) Interactions between locust bean gum and cellulose characterized by carbon-13 NMR spectroscopy. Carbohydr Polym 36:167–172CrossRefGoogle Scholar
  47. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRefGoogle Scholar
  48. Painter TJ, Larsen B (1970) Transient hemiacetal structures formed during the periodate oxidation of xylan. Acta Chem Scand 24:2366–2378CrossRefGoogle Scholar
  49. Perlin AS (2006) Glycol-cleavage oxidation. Adv Carbohydr Chem Biochem 60:183–250CrossRefGoogle Scholar
  50. Pigman W, Horton D (1972) Structure and sterochemistry of the monosaccharides. In: Pigman W, Horton D (eds) The carbohydrates, chemistry and biochemistry, vol IA, 2nd edn. Academic Press, New York, pp 1–65Google Scholar
  51. Potthast A, Rosenau T, Kosma P, Saariaho A-M, Vuorinen T (2005) On the nature of carbonyl groups in cellulosic pulps. Cellulose 12:43–50CrossRefGoogle Scholar
  52. Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modifications of cellulose in the periodate system: molecular weight distribution and carbonyl group profiles. Holzforschung 61:662–667CrossRefGoogle Scholar
  53. Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035CrossRefGoogle Scholar
  54. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989CrossRefGoogle Scholar
  55. Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRefGoogle Scholar
  56. Sassi J-F, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127CrossRefGoogle Scholar
  57. Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411CrossRefGoogle Scholar
  58. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  59. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111CrossRefGoogle Scholar
  60. Symons MCR (1955) Evidence for formation of free-radical intermediates in some reactions involving periodate. J Chem Soc 2794–2796Google Scholar
  61. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827Google Scholar
  62. Varma AJ, Chavan VB, Rajmohanan PR, Ganapathy S (1997) Some observations on the high-resolution solid-state CP-MAS carbon-13 NMR spectra of periodate-oxidized cellulose. Polym Degrad Stab 58:257–260CrossRefGoogle Scholar
  63. Yang H, Alam MN, van de Wen TGM (2013) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20:1865–1875Google Scholar
  64. Zeronian SH, Hudson FL, Peters RH (1964) The mechanical properties of paper made from periodate oxycellulose pulp and from the same pulp after reduction with borohydride. Tappi 47:557–564Google Scholar
  65. Zhang J, Jiang N, Dang Z, Elder TJ, Ragauskas AJ (2008) Oxidation and sulfonation of cellulosics. Cellulose 15:489–496CrossRefGoogle Scholar
  66. Zhao H, Heindel ND (1991) Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm Res 8:400–402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Nathanaël Guigo
    • 1
    • 2
    • 3
  • Karim Mazeau
    • 1
    • 2
  • Jean-Luc Putaux
    • 1
    • 2
  • Laurent Heux
    • 1
    • 2
    Email author
  1. 1.Centre de Recherches sur les Macromolécules Végétales (CERMAV)Université Grenoble AlpesGrenobleFrance
  2. 2.CNRS, CERMAVGrenobleFrance
  3. 3.Laboratoire Physique de la Matière Condensée, UMR 7336, CNRSUniversité Nice Sophia AntipolisNiceFrance

Personalised recommendations